14 research outputs found

    A technique for predictable real-time execution in the AN/UYS-2 parallel signal processing architecture

    Get PDF
    The AN/UYS-2 provides the Navy with a state of the art Digital Signal Processor. The AN-UYS-2 is programmed utilizing the Processing Graph Methodology (PGM), which represents specific tasks as nodes in a graph. It utilizes a simple First-Come-First Served (FCFS) run-time resource allocation mechanism that supports large-grain data flow processing. While the mechanism is robust, easy to implement, and results in low run-time overhead, it is difficult to predict of a given PGM will meet the application requirements. Therefor, an approach that uses compile-time analysis to exploit the periodic arrival of data and a priori knowledge of the amount of computation and communication overhead is investigated. Improvement in performance of the machine when the PGM graphs are restructures using this approach, called Revolving Cylinder scheduling, is observed; and it is found to be effective when there is a high communication overhead or when the PGM nodes are of uniform size.http://archive.org/details/techniqueforpred00littLieutenant, United States NavyApproved for public release; distribution is unlimited

    Programming Languages and Systems

    Get PDF
    This open access book constitutes the proceedings of the 29th European Symposium on Programming, ESOP 2020, which was planned to take place in Dublin, Ireland, in April 2020, as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The actual ETAPS 2020 meeting was postponed due to the Corona pandemic. The papers deal with fundamental issues in the specification, design, analysis, and implementation of programming languages and systems

    Digital Signal Processing (Second Edition)

    Get PDF
    This book provides an account of the mathematical background, computational methods and software engineering associated with digital signal processing. The aim has been to provide the reader with the mathematical methods required for signal analysis which are then used to develop models and algorithms for processing digital signals and finally to encourage the reader to design software solutions for Digital Signal Processing (DSP). In this way, the reader is invited to develop a small DSP library that can then be expanded further with a focus on his/her research interests and applications. There are of course many excellent books and software systems available on this subject area. However, in many of these publications, the relationship between the mathematical methods associated with signal analysis and the software available for processing data is not always clear. Either the publications concentrate on mathematical aspects that are not focused on practical programming solutions or elaborate on the software development of solutions in terms of working ‘black-boxes’ without covering the mathematical background and analysis associated with the design of these software solutions. Thus, this book has been written with the aim of giving the reader a technical overview of the mathematics and software associated with the ‘art’ of developing numerical algorithms and designing software solutions for DSP, all of which is built on firm mathematical foundations. For this reason, the work is, by necessity, rather lengthy and covers a wide range of subjects compounded in four principal parts. Part I provides the mathematical background for the analysis of signals, Part II considers the computational techniques (principally those associated with linear algebra and the linear eigenvalue problem) required for array processing and associated analysis (error analysis for example). Part III introduces the reader to the essential elements of software engineering using the C programming language, tailored to those features that are used for developing C functions or modules for building a DSP library. The material associated with parts I, II and III is then used to build up a DSP system by defining a number of ‘problems’ and then addressing the solutions in terms of presenting an appropriate mathematical model, undertaking the necessary analysis, developing an appropriate algorithm and then coding the solution in C. This material forms the basis for part IV of this work. In most chapters, a series of tutorial problems is given for the reader to attempt with answers provided in Appendix A. These problems include theoretical, computational and programming exercises. Part II of this work is relatively long and arguably contains too much material on the computational methods for linear algebra. However, this material and the complementary material on vector and matrix norms forms the computational basis for many methods of digital signal processing. Moreover, this important and widely researched subject area forms the foundations, not only of digital signal processing and control engineering for example, but also of numerical analysis in general. The material presented in this book is based on the lecture notes and supplementary material developed by the author for an advanced Masters course ‘Digital Signal Processing’ which was first established at Cranfield University, Bedford in 1990 and modified when the author moved to De Montfort University, Leicester in 1994. The programmes are still operating at these universities and the material has been used by some 700++ graduates since its establishment and development in the early 1990s. The material was enhanced and developed further when the author moved to the Department of Electronic and Electrical Engineering at Loughborough University in 2003 and now forms part of the Department’s post-graduate programmes in Communication Systems Engineering. The original Masters programme included a taught component covering a period of six months based on two semesters, each Semester being composed of four modules. The material in this work covers the first Semester and its four parts reflect the four modules delivered. The material delivered in the second Semester is published as a companion volume to this work entitled Digital Image Processing, Horwood Publishing, 2005 which covers the mathematical modelling of imaging systems and the techniques that have been developed to process and analyse the data such systems provide. Since the publication of the first edition of this work in 2003, a number of minor changes and some additions have been made. The material on programming and software engineering in Chapters 11 and 12 has been extended. This includes some additions and further solved and supplementary questions which are included throughout the text. Nevertheless, it is worth pointing out, that while every effort has been made by the author and publisher to provide a work that is error free, it is inevitable that typing errors and various ‘bugs’ will occur. If so, and in particular, if the reader starts to suffer from a lack of comprehension over certain aspects of the material (due to errors or otherwise) then he/she should not assume that there is something wrong with themselves, but with the author

    Compilation techniques for multicomputers

    No full text
    This thesis considers problems in process and data partitioning when compiling programs for distributed-memory parallel computers (or multicomputers). These partitions may be specified by the user through the use of language constructs, or automatically determined by the compiler. Data and process partitioning techniques are developed for two models of compilation. The first compilation model focusses on the loop nests present in a serial program. Executing the iterations of these loop nests in parallel accounts for a significant amount of the parallelism which can be exploited in these programs. The parallelism is exploited by applying a set of transformations to the loop nests. The iterations of the transformed loop nests are in a form which can be readily distributed amongst the processors of a multicomputer. The manner in which the arrays, referenced within these loop nests, are partitioned between the processors is determined by the distribution of the loop iterations. The second compilation model is based on the data parallel paradigm, in which operations are applied to many different data items collectively. High Performance Fortran is used as an example of this paradigm. Novel collective communication routines are developed, and are applied to provide the communication associated with the data partitions for both compilation models. Furthermore, it is shown that by using these routines the communication associated with partitioning data on a multicomputer is greatly simplified. These routines are developed as part of this thesis. The experimental context for this thesis is the development of a compiler for the Fujitsu AP1000 multicomputer. A prototype compiler is presented. Experimental results for a variety of applications are included

    Proceedings of the Seventh Annual Software Engineering Workshop

    Get PDF
    The Software Engineering Laboratory, software tools, software errors and cost estimation are addressed

    Building the Future Internet through FIRE

    Get PDF
    The Internet as we know it today is the result of a continuous activity for improving network communications, end user services, computational processes and also information technology infrastructures. The Internet has become a critical infrastructure for the human-being by offering complex networking services and end-user applications that all together have transformed all aspects, mainly economical, of our lives. Recently, with the advent of new paradigms and the progress in wireless technology, sensor networks and information systems and also the inexorable shift towards everything connected paradigm, first as known as the Internet of Things and lately envisioning into the Internet of Everything, a data-driven society has been created. In a data-driven society, productivity, knowledge, and experience are dependent on increasingly open, dynamic, interdependent and complex Internet services. The challenge for the Internet of the Future design is to build robust enabling technologies, implement and deploy adaptive systems, to create business opportunities considering increasing uncertainties and emergent systemic behaviors where humans and machines seamlessly cooperate

    Building the Future Internet through FIRE

    Get PDF
    The Internet as we know it today is the result of a continuous activity for improving network communications, end user services, computational processes and also information technology infrastructures. The Internet has become a critical infrastructure for the human-being by offering complex networking services and end-user applications that all together have transformed all aspects, mainly economical, of our lives. Recently, with the advent of new paradigms and the progress in wireless technology, sensor networks and information systems and also the inexorable shift towards everything connected paradigm, first as known as the Internet of Things and lately envisioning into the Internet of Everything, a data-driven society has been created. In a data-driven society, productivity, knowledge, and experience are dependent on increasingly open, dynamic, interdependent and complex Internet services. The challenge for the Internet of the Future design is to build robust enabling technologies, implement and deploy adaptive systems, to create business opportunities considering increasing uncertainties and emergent systemic behaviors where humans and machines seamlessly cooperate
    corecore