932 research outputs found

    Leveraging virtualization technologies for resource partitioning in mixed criticality systems

    Get PDF
    Multi- and many-core processors are becoming increasingly popular in embedded systems. Many of these processors now feature hardware virtualization capabilities, such as the ARM Cortex A15, and x86 processors with Intel VT-x or AMD-V support. Hardware virtualization offers opportunities to partition physical resources, including processor cores, memory and I/O devices amongst guest virtual machines. Mixed criticality systems and services can then co-exist on the same platform in separate virtual machines. However, traditional virtual machine systems are too expensive because of the costs of trapping into hypervisors to multiplex and manage machine physical resources on behalf of separate guests. For example, hypervisors are needed to schedule separate VMs on physical processor cores. Additionally, traditional hypervisors have memory footprints that are often too large for many embedded computing systems. This dissertation presents the design of the Quest-V separation kernel, which partitions services of different criticality levels across separate virtual machines, or sandboxes. Each sandbox encapsulates a subset of machine physical resources that it manages without requiring intervention of a hypervisor. In Quest-V, a hypervisor is not needed for normal operation, except to bootstrap the system and establish communication channels between sandboxes. This approach not only reduces the memory footprint of the most privileged protection domain, it removes it from the control path during normal system operation, thereby heightening security

    Scheduling policies and system software architectures for mixed-criticality computing

    Get PDF
    Mixed-criticality model of computation is being increasingly adopted in timing-sensitive systems. The model not only ensures that the most critical tasks in a system never fails, but also aims for better systems resource utilization in normal condition. In this report, we describe the widely used mixed-criticality task model and fixed-priority scheduling algorithms for the model in uniprocessors. Because of the necessity by the mixed-criticality task model and scheduling policies, isolation, both temporal and spatial, among tasks is one of the main requirements from the system design point of view. Different virtualization techniques have been used to design system software architecture with the goal of isolation. We discuss such a few system software architectures which are being and can be used for mixed-criticality model of computation

    Mixed-Criticality Scheduling with I/O

    Full text link
    This paper addresses the problem of scheduling tasks with different criticality levels in the presence of I/O requests. In mixed-criticality scheduling, higher criticality tasks are given precedence over those of lower criticality when it is impossible to guarantee the schedulability of all tasks. While mixed-criticality scheduling has gained attention in recent years, most approaches typically assume a periodic task model. This assumption does not always hold in practice, especially for real-time and embedded systems that perform I/O. For example, many tasks block on I/O requests until devices signal their completion via interrupts; both the arrival of interrupts and the waking of blocked tasks can be aperiodic. In our prior work, we developed a scheduling technique in the Quest real-time operating system, which integrates the time-budgeted management of I/O operations with Sporadic Server scheduling of tasks. This paper extends our previous scheduling approach with support for mixed-criticality tasks and I/O requests on the same processing core. Results show the effective schedulability of different task sets in the presence of I/O requests is superior in our approach compared to traditional methods that manage I/O using techniques such as Sporadic Servers.Comment: Second version has replaced simulation experiments with real machine experiments, third version fixed minor error in Equation 5 (missing a plus sign

    Distributed real-time fault tolerance in a virtualized separation kernel

    Full text link
    Computers are increasingly being placed in scenarios where a computer error could result in the loss of human life or significant financial loss. Fault tolerant techniques must be employed to prevent an error from resulting in a fault causing such losses. Two types of errors that are common in real-time and embedded system are soft errors, i.e. data bit corruption, and timing errors, such as missed deadlines. Purely software based techniques to address these types of errors have the advantage of not requiring specialized hardware and are able to use more readily available commercial off-the-shelf hardware. Timing errors are addressed using Adaptive Mixed-Criticality, a scheduling technique where higher criticality tasks are given precedence over those of lower criticality when it is impossible to guarantee the schedulability of all tasks. While mixed-criticality scheduling has gained attention in recent years, most approaches assume a periodic task model and that the system has a single criticality level which dictates the available budget to all tasks. In practice these assumptions do not hold: different types of tasks are better served by different scheduling approaches and only a subset of high critical tasks might require additional capacity to meet deadlines. In the latter case, this occurs when a process has experienced a fault and requires additional capacity to perform the recovery. In this thesis, soft errors are addressed using a novel real-time fault tolerance method based on a virtualized separation kernel. Instead of executing redundant copies of an application on separate machines, the applications are consolidated onto one multi-core processor and use hardware virtualization extensions to partition the applications. This allows new recovery schemes to be explored. In addition, the maximum recovery time is sufficiently bounded to ensure recovery occurs in a timely manner without affecting the normal execution of the application. A virtualized separation kernel in combination with Adaptive Mixed-Criticality techniques creates a fault tolerant system that predictably detects and recovers from timing and soft errors

    MARACAS: a real-time multicore VCPU scheduling framework

    Full text link
    This paper describes a multicore scheduling and load-balancing framework called MARACAS, to address shared cache and memory bus contention. It builds upon prior work centered around the concept of virtual CPU (VCPU) scheduling. Threads are associated with VCPUs that have periodically replenished time budgets. VCPUs are guaranteed to receive their periodic budgets even if they are migrated between cores. A load balancing algorithm ensures VCPUs are mapped to cores to fairly distribute surplus CPU cycles, after ensuring VCPU timing guarantees. MARACAS uses surplus cycles to throttle the execution of threads running on specific cores when memory contention exceeds a certain threshold. This enables threads on other cores to make better progress without interference from co-runners. Our scheduling framework features a novel memory-aware scheduling approach that uses performance counters to derive an average memory request latency. We show that latency-based memory throttling is more effective than rate-based memory access control in reducing bus contention. MARACAS also supports cache-aware scheduling and migration using page recoloring to improve performance isolation amongst VCPUs. Experiments show how MARACAS reduces multicore resource contention, leading to improved task progress.http://www.cs.bu.edu/fac/richwest/papers/rtss_2016.pdfAccepted manuscrip

    MCS-IOV : Real-time I/o virtualization for mixed-criticality systems

    Get PDF
    In mixed-criticality systems, timely handling of I/O is a key for the system being successfully implemented and functioning appropriately. The criticality levels of functions and sometimes the whole system are often dependent on the state of the I/O. An I/O system for a MCS must provide simultaneously isolation/separation, performance/efficiency and timing-predictability, as well as being able to manage I/O resource in an adaptive manner to facilitate efficient yet safe resource sharing among components of different criticality levels. Existing approaches cannot achieve all of these requirements simultaneously. This paper presents a MCS I/O management framework, termed MCS-IOV. MCS-IOV is based on hardware assisted virtualisation, which provides temporal and spatial isolation and prohibits fault propagation with small extra overhead in performance. MCS-IOV extends a real-time I/O virtualisation system, by supporting the concept of mixed criticalities and customised interfaces for schedulers, which offers good timing-preditability. MCS-IOV supports I/O driven criticality mode switch (the mode switch can be triggered by detection of unexpected I/O behaviors, e.g., a higher I/O utilization than expected) and timely I/O resource reconfiguration up on that. Finally, We evaluated and demonstrate MCS-IOV in different aspects
    • …
    corecore