109 research outputs found

    Choiceless Polynomial Time with Witnessed Symmetric Choice

    Full text link
    We extend Choiceless Polynomial Time (CPT), the currently only remaining promising candidate in the quest for a logic capturing PTime, so that this extended logic has the following property: for every class of structures for which isomorphism is definable, the logic automatically captures PTime. For the construction of this logic we extend CPT by a witnessed symmetric choice operator. This operator allows for choices from definable orbits. But, to ensure polynomial time evaluation, automorphisms have to be provided to certify that the choice set is indeed an orbit. We argue that, in this logic, definable isomorphism implies definable canonization. Thereby, our construction removes the non-trivial step of extending isomorphism definability results to canonization. This step was a part of proofs that show that CPT or other logics capture PTime on a particular class of structures. The step typically required substantial extra effort.Comment: 65 pages. Full version of a paper to appear at LICS 22. v2: corrected typos and small mistake

    Canonization for Bounded and Dihedral Color Classes in Choiceless Polynomial Time

    Get PDF
    In the quest for a logic capturing Ptime the next natural classes of structures to consider are those with bounded color class size. We present a canonization procedure for graphs with dihedral color classes of bounded size in the logic of Choiceless Polynomial Time (CPT), which then captures Ptime on this class of structures. This is the first result of this form for non-abelian color classes. The first step proposes a normal form which comprises a "rigid assemblage". This roughly means that the local automorphism groups form 2-injective 3-factor subdirect products. Structures with color classes of bounded size can be reduced canonization preservingly to normal form in CPT. In the second step, we show that for graphs in normal form with dihedral color classes of bounded size, the canonization problem can be solved in CPT. We also show the same statement for general ternary structures in normal form if the dihedral groups are defined over odd domains

    Querying the Guarded Fragment

    Full text link
    Evaluating a Boolean conjunctive query Q against a guarded first-order theory F is equivalent to checking whether "F and not Q" is unsatisfiable. This problem is relevant to the areas of database theory and description logic. Since Q may not be guarded, well known results about the decidability, complexity, and finite-model property of the guarded fragment do not obviously carry over to conjunctive query answering over guarded theories, and had been left open in general. By investigating finite guarded bisimilar covers of hypergraphs and relational structures, and by substantially generalising Rosati's finite chase, we prove for guarded theories F and (unions of) conjunctive queries Q that (i) Q is true in each model of F iff Q is true in each finite model of F and (ii) determining whether F implies Q is 2EXPTIME-complete. We further show the following results: (iii) the existence of polynomial-size conformal covers of arbitrary hypergraphs; (iv) a new proof of the finite model property of the clique-guarded fragment; (v) the small model property of the guarded fragment with optimal bounds; (vi) a polynomial-time solution to the canonisation problem modulo guarded bisimulation, which yields (vii) a capturing result for guarded bisimulation invariant PTIME.Comment: This is an improved and extended version of the paper of the same title presented at LICS 201

    Definability of linear equation systems over groups and rings

    Get PDF
    Motivated by the quest for a logic for PTIME and recent insights that the descriptive complexity of problems from linear algebra is a crucial aspect of this problem, we study the solvability of linear equation systems over finite groups and rings from the viewpoint of logical (inter-)definability. All problems that we consider are decidable in polynomial time, but not expressible in fixed-point logic with counting. They also provide natural candidates for a separation of polynomial time from rank logics, which extend fixed-point logics by operators for determining the rank of definable matrices and which are sufficient for solvability problems over fields. Based on the structure theory of finite rings, we establish logical reductions among various solvability problems. Our results indicate that all solvability problems for linear equation systems that separate fixed-point logic with counting from PTIME can be reduced to solvability over commutative rings. Moreover, we prove closure properties for classes of queries that reduce to solvability over rings, which provides normal forms for logics extended with solvability operators. We conclude by studying the extent to which fixed-point logic with counting can express problems in linear algebra over finite commutative rings, generalising known results on the logical definability of linear-algebraic problems over finite fields

    Witnessed Symmetric Choice and Interpretations in Fixed-Point Logic with Counting

    Get PDF
    At the core of the quest for a logic for Ptime is a mismatch between algorithms making arbitrary choices and isomorphism-invariant logics. One approach to tackle this problem is witnessed symmetric choice. It allows for choices from definable orbits certified by definable witnessing automorphisms. We consider the extension of fixed-point logic with counting (IFPC) with witnessed symmetric choice (IFPC+WSC) and a further extension with an interpretation operator (IFPC+WSC+I). The latter operator evaluates a subformula in the structure defined by an interpretation. When similarly extending pure fixed-point logic (IFP), IFP+WSC+I simulates counting which IFP+WSC fails to do. For IFPC+WSC, it is unknown whether the interpretation operator increases expressiveness and thus allows studying the relation between WSC and interpretations beyond counting. In this paper, we separate IFPC+WSC from IFPC+WSC+I by showing that IFPC+WSC is not closed under FO-interpretations. By the same argument, we answer an open question of Dawar and Richerby regarding non-witnessed symmetric choice in IFP. Additionally, we prove that nesting WSC-operators increases the expressiveness using the so-called CFI graphs. We show that if IFPC+WSC+I canonizes a particular class of base graphs, then it also canonizes the corresponding CFI graphs. This differs from various other logics, where CFI graphs provide difficult instances

    Choiceless Logarithmic Space

    Get PDF
    One of the most important open problems in finite model theory is the question whether there is a logic characterising efficient computation. While this question usually concerns Ptime, it can also be applied to other complexity classes, and in particular to Logspace which can be seen as a formalisation of efficient computation for big data. One of the strongest candidates for a logic capturing Ptime is Choiceless Polynomial Time (CPT). It is based on the idea of choiceless algorithms, a general model of symmetric computation over abstract structures (rather than their encodings by finite strings). However, there is currently neither a comparably strong candidate for a logic for Logspace, nor a logic transferring the idea of choiceless computation to Logspace. We propose here a notion of Choiceless Logarithmic Space which overcomes some of the obstacles posed by Logspace as a less robust complexity class. The resulting logic is contained in both Logspace and CPT, and is strictly more expressive than all logics for Logspace that have been known so far. Further, we address the question whether this logic can define all Logspace-queries, and prove that this is not the case

    Making Queries Tractable on Big Data with Preprocessing

    Get PDF
    A query class is traditionally considered tractable if there exists a polynomial-time (PTIME) algorithm to answer its queries. When it comes to big data, however, PTIME al-gorithms often become infeasible in practice. A traditional and effective approach to coping with this is to preprocess data off-line, so that queries in the class can be subsequently evaluated on the data efficiently. This paper aims to pro-vide a formal foundation for this approach in terms of com-putational complexity. (1) We propose a set of Π-tractable queries, denoted by ΠT0Q, to characterize classes of queries that can be answered in parallel poly-logarithmic time (NC) after PTIME preprocessing. (2) We show that several natu-ral query classes are Π-tractable and are feasible on big data. (3) We also study a set ΠTQ of query classes that can be ef-fectively converted to Π-tractable queries by re-factorizing its data and queries for preprocessing. We introduce a form of NC reductions to characterize such conversions. (4) We show that a natural query class is complete for ΠTQ. (5) We also show that ΠT0Q ⊂ P unless P = NC, i.e., the set ΠT0Q of all Π-tractable queries is properly contained in the set P of all PTIME queries. Nonetheless, ΠTQ = P, i.e., all PTIME query classes can be made Π-tractable via proper re-factorizations. This work is a step towards understanding the tractability of queries in the context of big data. 1

    Choiceless Computation and Symmetry: Limitations of Definability

    Get PDF
    • …
    corecore