48 research outputs found

    Quintic trigonometric Bézier curve with two shape parameters

    Get PDF
    The fifth degree of trigonometric Bézier curve called quintic with two shapes parameter is presented in this paper. Shape parameters provide more control on the shape of the curve compared to the ordinary Bézier curve. This technique is one of the crucial parts in constructing curves and surfaces because the presence of shape parameters will allow the curve to be more flexible without changing its control points. Furthermore, by changing the value of shape parameters, the curve still preserves its geometrical features thus makes it more convenient rather than altering the control points. But, to interpolate curves from one point to another or surface patches, we need to satisfy certain continuity constraints to ensure the smoothness not just parametrically but also geometrically

    Constrained modification of the cubic trigonometric Bézier curve with two shape parameters

    Get PDF
    A new type of cubic trigonometric Bézier curve has been introduced in [1]. This trigonometric curve has two global shape parameters λ and µ. We give a lower boundary to the shape parameters where the curve has lost the variation diminishing property. In this paper the relationship of the two shape parameters and their geometric effect on the curve is discussed. These shape parameters are independent and we prove that their geometric effect on the curve is linear. Because of the independence constrained modification is not unequivocal and it raises a number of problems which are also studied. These issues are generalized for surfaces with four shape parameters. We show that the geometric effect of the shape parameters on the surface is parabolic. Keywords: trigonometric curve, spline curve, constrained modificatio

    A univariate rational quadratic trigonometric interpolating spline to visualize shaped data

    Get PDF
    This study was concerned with shape preserving interpolation of 2D data. A piecewise C1 univariate rational quadratic trigonometric spline including three positive parameters was devised to produce a shaped interpolant for given shaped data. Positive and monotone curve interpolation schemes were presented to sustain the respective shape features of data. Each scheme was tested for plentiful shaped data sets to substantiate the assertion made in their construction. Moreover, these schemes were compared with conventional shape preserving rational quadratic splines to demonstrate the usefulness of their construction

    Geometric properties and constrained modification of trigonometric spline curves of Han

    Get PDF
    New types of quadratic and cubic trigonometrial polynomial curves have been introduced in [2] and [3]. These trigonometric curves have a global shape parameter λ. In this paper the geometric effect of this shape parameter on the curves is discussed. We prove that this effect is linear. Moreover we show that the quadratic curve can interpolate the control points at λ = √2. Constrained modification of these curves is also studied. A curve passing through a given point is computed by an algorithm which includes numerical computations. These issues are generalized for surfaces with two shape parameters. We show that a point of the surface can move along a hyperbolic paraboloid

    Visualization Of Curve And Surface Data Using Rational Cubic Ball Functions

    Get PDF
    This study considered the problem of shape preserving interpolation through regular data using rational cubic Ball which is an alternative scheme for rational Bézier functions. A rational Ball function with shape parameters is easy to implement because of its less degree terms at the end polynomial compared to rational Bézier functions. In order to understand the behavior of shape parameters (weights), we need to discuss shape control analysis which can be used to modify the shape of a curve, locally and globally. This issue has been discovered and brought to the study of conversion between Ball and Bézier curve

    Preserving Positivity And Monotonicity Of Real Data Using Bézier-Ball Function And Radial Basis Function

    Get PDF
    In this thesis, a rational cubic Bézier-Ball function which refers to a rational cubic Bézier function expressed in terms of Ball control points and weights are used to preserve positivity and monotonicity of real data sets. Four shape parameters are proposed to preserve the characteristics of the data. A rational Bi-Cubic Bézier-Ball function is introduced to preserve the positivity of surface generated from real data set and from known functions. Eight shape parameters proposed can be modified to preserve the positivity of the surface. Interpolating 2D and 3D real data using radial basis function (RBF) is proposed as an alternative method to preserve the positivity of the data. Two types of RBF which are Multiquadric (MQ) function and Gaussian function, which contains a shape parameter are used. The boundaries (lower and upper limit) of the shape parameter which preserves the positivity of real data are proposed. Comparisons are made using the root-mean-square (RMS) error between the proposed interpolation methods with existing works in literature. It was found that MQ function and rational cubic Bézier-Ball is comparable with existing literature in preserving positivity for both curves and surfaces. For preserving monotonicity, the rational cubic Bézier-Ball is comparable but the MQ quasi-interpolation introduced can only linearly interpolate the curve and the RMS values are big. Gaussian function is able to preserve positivity of curves and surfaces but with unwanted oscillations which result to unsmooth curves

    The Construction of Cubic Bezier Curve

    Get PDF
    The construction of Bezier curves is one of the curves that are commonly discussed in Computer-Aided Geometric Design (CAGD). This study focuses on cubic Bezier curve. The objectives in this study are to review the properties of cubic Bezier curve and construct the cubic Bezier curves. In this study, the expanding equations from the basis function of the curve is used to construct the cubic Bezier curve. Future researchers can expand the degree of the Bezier curves, which is more useful in Computer-Aided Design (CAD), CAGD and engineering. The next studies in Bezier curve are recommended as a contribution for further research

    Modelling of Surfaces of Engineering Products on the Basis of Array of Points

    Get PDF
    The method of designing elements of the surfaces\u27 frames based on array of points is suggested in the work. Elements of frames are contours that are received via interpolation of sets of points, which are selected from the initial array of points. The algorithms have been developed for design plane and spatial contours that represent the curves with specified geometrical properties with prescribed accuracy. Formed contours are used as elements of «Profile» and «Guide Curves» at forming the model of surface by means of function of «Lofted Surface» in CAD system. Using the method of designing elements of frames of the surfaces is actual for modeling of surfaces of technical items that function-interact with the environment. The developed method was proven while modelling functional surfaces that bound an impeller blade channel of a turbine compressor

    Arbitrary topology meshes in geometric design and vector graphics

    Get PDF
    Meshes are a powerful means to represent objects and shapes both in 2D and 3D, but the techniques based on meshes can only be used in certain regular settings and restrict their usage. Meshes with an arbitrary topology have many interesting applications in geometric design and (vector) graphics, and can give designers more freedom in designing complex objects. In the first part of the thesis we look at how these meshes can be used in computer aided design to represent objects that consist of multiple regular meshes that are constructed together. Then we extend the B-spline surface technique from the regular setting to work on extraordinary regions in meshes so that multisided B-spline patches are created. In addition, we show how to render multisided objects efficiently, through using the GPU and tessellation. In the second part of the thesis we look at how the gradient mesh vector graphics primitives can be combined with procedural noise functions to create expressive but sparsely defined vector graphic images. We also look at how the gradient mesh can be extended to arbitrary topology variants. Here, we compare existing work with two new formulations of a polygonal gradient mesh. Finally we show how we can turn any image into a vector graphics image in an efficient manner. This vectorisation process automatically extracts important image features and constructs a mesh around it. This automatic pipeline is very efficient and even facilitates interactive image vectorisation
    corecore