77 research outputs found

    Undecidability of the Spectral Gap in One Dimension

    Get PDF
    The spectral gap problem - determining whether the energy spectrum of a system has an energy gap above ground state, or if there is a continuous range of low-energy excitations - pervades quantum many-body physics. Recently, this important problem was shown to be undecidable for quantum spin systems in two (or more) spatial dimensions: there exists no algorithm that determines in general whether a system is gapped or gapless, a result which has many unexpected consequences for the physics of such systems. However, there are many indications that one dimensional spin systems are simpler than their higher-dimensional counterparts: for example, they cannot have thermal phase transitions or topological order, and there exist highly-effective numerical algorithms such as DMRG - and even provably polynomial-time ones - for gapped 1D systems, exploiting the fact that such systems obey an entropy area-law. Furthermore, the spectral gap undecidability construction crucially relied on aperiodic tilings, which are not possible in 1D. So does the spectral gap problem become decidable in 1D? In this paper we prove this is not the case, by constructing a family of 1D spin chains with translationally-invariant nearest neighbour interactions for which no algorithm can determine the presence of a spectral gap. This not only proves that the spectral gap of 1D systems is just as intractable as in higher dimensions, but also predicts the existence of qualitatively new types of complex physics in 1D spin chains. In particular, it implies there are 1D systems with constant spectral gap and non-degenerate classical ground state for all systems sizes up to an uncomputably large size, whereupon they switch to a gapless behaviour with dense spectrum.Comment: 7 figure

    Uncomputability of phase diagrams

    Get PDF
    The phase diagram of a material is of central importance in describing the properties and behaviour of a condensed matter system. In this work, we prove that the task of determining the phase diagram of a many-body Hamiltonian is in general uncomputable, by explicitly constructing a continuous one-parameter family of Hamiltonians H(φ), where φ∈ R, for which this is the case. The H(φ) are translationally-invariant, with nearest-neighbour couplings on a 2D spin lattice. As well as implying uncomputablity of phase diagrams, our result also proves that undecidability can hold for a set of positive measure of a Hamiltonian’s parameter space, whereas previous results only implied undecidability on a zero measure set. This brings the spectral gap undecidability results a step closer to standard condensed matter problems, where one typically studies phase diagrams of many-body models as a function of one or more continuously varying real parameters, such as magnetic field strength or pressure

    The complexity of translationally-invariant low-dimensional spin lattices in 3D

    Get PDF
    In this theoretical paper, we consider spin systems in three spatial dimensions and consider the computational complexity of estimating the ground state energy, known as the local Hamiltonian problem, for translationally invariant Hamiltonians. We prove that the local Hamiltonian problem for 3D lattices with face-centered cubic unit cells and 4-local translationally invariant interactions between spin-3/2 particles and open boundary conditions is QMAEXP-complete, where QMAEXP is the class of problems which can be verified in exponential time on a quantum computer. We go beyond a mere embedding of past hard 1D history state constructions, for which the local spin dimension is enormous: even state-of-the-art constructions have local dimension 42. We avoid such a large local dimension by combining some different techniques in a novel way. For the verifier circuit which we embed into the ground space of the local Hamiltonian, we utilize a recently developed computational model, called a quantum ring machine, which is especially well suited for translationally invariant history state constructions. This is encoded with a new and particularly simple universal gate set, which consists of a single 2-qubit gate applied only to nearest-neighbour qubits. The Hamiltonian construction involves a classical Wang tiling problem as a binary counter which translates one cube side length into a binary description for the encoded verifier input and a carefully engineered history state construction that implements the ring machine on the cubic lattice faces. These novel techniques allow us to significantly lower the local spin dimension, surpassing the best translationally invariant result to date by two orders of magnitude (in the number of degrees of freedom per coupling). This brings our models on par with the best non-translationally invariant constructio

    Computational complexity of PEPS zero testing

    Get PDF
    Projected entangled pair states aim at describing lattice systems in two spatial dimensions that obey an area law. They are specified by associating a tensor with each site, and they are generated by patching these tensors. We consider the problem of determining whether the state resulting from this patching is null, and prove it to be NP-hard; the PEPS used to prove this claim have a boundary and are homogeneous in their bulk. A variation of this problem is next shown to be undecidable. These results have various implications: they question the possibility of a 'fundamental theorem' for PEPS; there are PEPS for which the presence of a symmetry is undecidable; there exist parent hamiltonians of PEPS for which the existence of a gap above the ground state is undecidable. En passant, we identify a family of classical Hamiltonians, with nearest neighbour interactions, and translationally invariant in their bulk, for which the commuting 2-local Hamiltonian problem is NP-complete.Comment: 4+3 pages, 5 figure
    • …
    corecore