7,360 research outputs found

    A note on boundary conditions for quantum hydrodynamic equations

    Get PDF
    AbstractThe asymptotic behavior of the thermal equilibrium state of a bipolar quantum hydrodynamic model is considered. The quantum limit L → 0, L denoting a characteristic device length, is carried out rigorously. It shows that the classical assumption of charge neutrality at the boundary becomes invalid for ultra small semiconductor devices, whereas the assumption of vanishing boundary quantum effects will be confirmed. Furthermore, numerical simulations are presented, which give insight in the quantitative behavior

    Semiclassical and relaxation limits of bipolar quantum hydrodynamic model

    Get PDF
    The global in-time semiclassical and relaxation limits of the bipolar quantum hydrodynamic model for semiconductors are investigated in R3R^3. We prove that the unique strong solution converges globally in time to the strong solution of classical bipolar hydrodynamical equation in the process of semiclassical limit and to that of the classical Drift-Diffusion system under the combined relaxation and semiclassical limits.Comment: 21 page

    Hydrodynamic acoustic plasmon resonances in semiconductor nanowires and their dimers

    Full text link
    The hydrodynamic Drude model known from metal plasmonics also applies to semiconductor structures of sizes in between single-particle quantum confinement and bulk. But contrary to metals, for semiconductors two or more types of plasma may have to be taken into account in order to properly describe their plasmonic properties. In this combined analytical and computational study, we explore predictions of the recently proposed two-fluid hydrodynamic Drude model for the optical properties of plasmonic semiconductor nanowires, in particular for thermally excited InSb nanowires. We focus on the low-frequency acoustic surface and bulk plasmon resonances that are unique fingerprints for this model and are yet to be observed. We identify these resonances in spectra for single nanowires based on analytical calculations, and they are in complete agreement with our numerical implementation of the model. For dimers of nanowires we predict substantial increase of the extinction cross section and field enhancement of the acoustic localized surface plasmon resonance, which makes its observation in dimers more likely.Comment: I would like to inform that Dr.Abbas Zarifi is the corresponding author of this pape

    Quantum Hydrodynamic Model by Moment Closure of Wigner Equation

    Full text link
    In this paper, we derive the quantum hydrodynamics models based on the moment closure of the Wigner equation. The moment expansion adopted is of the Grad type firstly proposed in \cite{Grad}. The Grad's moment method was originally developed for the Boltzmann equation. In \cite{Fan_new}, a regularization method for the Grad's moment system of the Boltzmann equation was proposed to achieve the globally hyperbolicity so that the local well-posedness of the moment system is attained. With the moment expansion of the Wigner function, the drift term in the Wigner equation has exactly the same moment representation as in the Boltzmann equation, thus the regularization in \cite{Fan_new} applies. The moment expansion of the nonlocal Wigner potential term in the Wigner equation is turned to be a linear source term, which can only induce very mild growth of the solution. As the result, the local well-posedness of the regularized moment system for the Wigner equation remains as for the Boltzmann equation

    Wigner-Poisson and nonlocal drift-diffusion model equations for semiconductor superlattices

    Full text link
    A Wigner-Poisson kinetic equation describing charge transport in doped semiconductor superlattices is proposed. Electrons are supposed to occupy the lowest miniband, exchange of lateral momentum is ignored and the electron-electron interaction is treated in the Hartree approximation. There are elastic collisions with impurities and inelastic collisions with phonons, imperfections, etc. The latter are described by a modified BGK (Bhatnagar-Gross-Krook) collision model that allows for energy dissipation while yielding charge continuity. In the hyperbolic limit, nonlocal drift-diffusion equations are derived systematically from the kinetic Wigner-Poisson-BGK system by means of the Chapman-Enskog method. The nonlocality of the original quantum kinetic model equations implies that the derived drift-diffusion equations contain spatial averages over one or more superlattice periods. Numerical solutions of the latter equations show self-sustained oscillations of the current through a voltage biased superlattice, in agreement with known experiments.Comment: 20 pages, 1 figure, published as M3AS 15, 1253 (2005) with correction

    Size-dependent nonlocal effects in plasmonic semiconductor particles

    Get PDF
    Localized surface plasmons (LSP) in semiconductor particles are expected to exhibit spatial nonlocal response effects as the geometry enters the nanometer scale. To investigate these nonlocal effects, we apply the hydrodynamic model to nanospheres of two different semiconductor materials: intrinsic InSb and nn-doped GaAs. Our results show that the semiconductors indeed display nonlocal effects, and that these effects are even more pronounced than in metals. In a 150nm150\mathrm{\,nm} InSb particle at 300K300\mathrm{\,K}, the LSP frequency is blueshifted 35%, which is orders of magnitude larger than the blueshift in a metal particle of the same size. This property, together with their tunability, makes semiconductors a promising platform for experiments in nonlocal effects.Comment: 7 pages, 3 figures, 1 table, corrected typos in text and figure
    corecore