11,148 research outputs found

    Five-Dimensional BF Theory and Four-Dimensional Current Algebra

    Get PDF
    We consider the relation between the five-dimensional BF model and a four-dimensional local current algebra from the point of view of perturbative local quantum field theory. We use an axial gauge fixing procedure and show that it allows for a well defined theory which actually can be solved exactly.Comment: 15 pages LaTeX file +3 Figures in TexDraw (available from hep-th) LATEX-compatibility Bug fixe

    One dimensional chain of quantum molecule motors as a mathematical physics model for muscle fibre

    Full text link
    A quantum chain model of many molecule motors is proposed as a mathematical physics theory on the microscopic modeling of classical force-velocity relation and tension transients of muscle fibre. We proposed quantum many-particle Hamiltonian to predict the force-velocity relation for the slow release of muscle fibre which has no empirical relation yet, it is much more complicate than hyperbolic relation. Using the same Hamiltonian, we predicted the mathematical force-velocity relation when the muscle is stimulated by alternative electric current. The discrepancy between input electric frequency and the muscle oscillation frequency has a physical understanding by Doppler effect in this quantum chain model. Further more, we apply quantum physics phenomena to explore the tension time course of cardiac muscle and insect flight muscle. Most of the experimental tension transients curves found their correspondence in the theoretical output of quantum two-level and three-level model. Mathematically modeling electric stimulus as photons exciting a quantum three-level particle reproduced most tension transient curves of water bug Lethocerus Maximus.Comment: 16 pages, 12 figures, Arguments are adde

    Quantum Physics and Computers

    Get PDF
    Recent theoretical results confirm that quantum theory provides the possibility of new ways of performing efficient calculations. The most striking example is the factoring problem. It has recently been shown that computers that exploit quantum features could factor large composite integers. This task is believed to be out of reach of classical computers as soon as the number of digits in the number to factor exceeds a certain limit. The additional power of quantum computers comes from the possibility of employing a superposition of states, of following many distinct computation paths and of producing a final output that depends on the interference of all of them. This ``quantum parallelism'' outstrips by far any parallelism that can be thought of in classical computation and is responsible for the ``exponential'' speed-up of computation. This is a non-technical (or at least not too technical) introduction to the field of quantum computation. It does not cover very recent topics, such as error-correction.Comment: 27 pages, LaTeX, 8 PostScript figures embedded. A bug in one of the postscript files has been fixed. Reprints available from the author. The files are also available from http://eve.physics.ox.ac.uk/Articles/QC.Articles.htm
    • …
    corecore