3,498 research outputs found

    Controlled self-organisation using learning classifier systems

    Get PDF
    The complexity of technical systems increases, breakdowns occur quite often. The mission of organic computing is to tame these challenges by providing degrees of freedom for self-organised behaviour. To achieve these goals, new methods have to be developed. The proposed observer/controller architecture constitutes one way to achieve controlled self-organisation. To improve its design, multi-agent scenarios are investigated. Especially, learning using learning classifier systems is addressed

    Architecting system of systems: artificial life analysis of financial market behavior

    Get PDF
    This research study focuses on developing a framework that can be utilized by system architects to understand the emergent behavior of system architectures. The objective is to design a framework that is modular and flexible in providing different ways of modeling sub-systems of System of Systems. At the same time, the framework should capture the adaptive behavior of the system since evolution is one of the key characteristics of System of Systems. Another objective is to design the framework so that humans can be incorporated into the analysis. The framework should help system architects understand the behavior as well as promoters or inhibitors of change in human systems. Computational intelligence tools have been successfully used in analysis of Complex Adaptive Systems. Since a System of Systems is a collection of Complex Adaptive Systems, a framework utilizing combination of these tools can be developed. Financial markets are selected to demonstrate the various architectures developed from the analysis framework --Introduction, page 3

    Learning in Evolutionary Environments

    Get PDF
    The purpose of this work is to present a sort of short selective guide to an enormous and diverse literature on learning processes in economics. We argue that learning is an ubiquitous characteristic of most economic and social systems but it acquires even greater importance in explicitly evolutionary environments where: a) heterogeneous agents systematically display various forms of "bounded rationality"; b) there is a persistent appearance of novelties, both as exogenous shocks and as the result of technological, behavioural and organisational innovations by the agents themselves; c) markets (and other interaction arrangements) perform as selection mechanisms; d) aggregate regularities are primarily emergent properties stemming from out-of-equilibrium interactions. We present, by means of examples, the most important classes of learning models, trying to show their links and differences, and setting them against a sort of ideal framework of "what one would like to understand about learning...". We put a signifiphasis on learning models in their bare-bone formal structure, but we also refer to the (generally richer) non-formal theorising about the same objects. This allows us to provide an easier mapping of a wide and largely unexplored research agenda.Learning, Evolutionary Environments, Economic Theory, Rationality

    Law Informs Code: A Legal Informatics Approach to Aligning Artificial Intelligence with Humans

    Get PDF
    We are currently unable to specify human goals and societal values in a way that reliably directs AI behavior. Law-making and legal interpretation form a computational engine that converts opaque human values into legible directives. "Law Informs Code" is the research agenda embedding legal knowledge and reasoning in AI. Similar to how parties to a legal contract cannot foresee every potential contingency of their future relationship, and legislators cannot predict all the circumstances under which their proposed bills will be applied, we cannot ex ante specify rules that provably direct good AI behavior. Legal theory and practice have developed arrays of tools to address these specification problems. For instance, legal standards allow humans to develop shared understandings and adapt them to novel situations. In contrast to more prosaic uses of the law (e.g., as a deterrent of bad behavior through the threat of sanction), leveraged as an expression of how humans communicate their goals, and what society values, Law Informs Code. We describe how data generated by legal processes (methods of law-making, statutory interpretation, contract drafting, applications of legal standards, legal reasoning, etc.) can facilitate the robust specification of inherently vague human goals. This increases human-AI alignment and the local usefulness of AI. Toward society-AI alignment, we present a framework for understanding law as the applied philosophy of multi-agent alignment. Although law is partly a reflection of historically contingent political power - and thus not a perfect aggregation of citizen preferences - if properly parsed, its distillation offers the most legitimate computational comprehension of societal values available. If law eventually informs powerful AI, engaging in the deliberative political process to improve law takes on even more meaning.Comment: Forthcoming in Northwestern Journal of Technology and Intellectual Property, Volume 2
    • 

    corecore