28 research outputs found

    Nonlinear Integer Programming

    Full text link
    Research efforts of the past fifty years have led to a development of linear integer programming as a mature discipline of mathematical optimization. Such a level of maturity has not been reached when one considers nonlinear systems subject to integrality requirements for the variables. This chapter is dedicated to this topic. The primary goal is a study of a simple version of general nonlinear integer problems, where all constraints are still linear. Our focus is on the computational complexity of the problem, which varies significantly with the type of nonlinear objective function in combination with the underlying combinatorial structure. Numerous boundary cases of complexity emerge, which sometimes surprisingly lead even to polynomial time algorithms. We also cover recent successful approaches for more general classes of problems. Though no positive theoretical efficiency results are available, nor are they likely to ever be available, these seem to be the currently most successful and interesting approaches for solving practical problems. It is our belief that the study of algorithms motivated by theoretical considerations and those motivated by our desire to solve practical instances should and do inform one another. So it is with this viewpoint that we present the subject, and it is in this direction that we hope to spark further research.Comment: 57 pages. To appear in: M. J\"unger, T. Liebling, D. Naddef, G. Nemhauser, W. Pulleyblank, G. Reinelt, G. Rinaldi, and L. Wolsey (eds.), 50 Years of Integer Programming 1958--2008: The Early Years and State-of-the-Art Surveys, Springer-Verlag, 2009, ISBN 354068274

    N-fold integer programming in cubic time

    Full text link
    N-fold integer programming is a fundamental problem with a variety of natural applications in operations research and statistics. Moreover, it is universal and provides a new, variable-dimension, parametrization of all of integer programming. The fastest algorithm for nn-fold integer programming predating the present article runs in time O(ng(A)L)O(n^{g(A)}L) with LL the binary length of the numerical part of the input and g(A)g(A) the so-called Graver complexity of the bimatrix AA defining the system. In this article we provide a drastic improvement and establish an algorithm which runs in time O(n3L)O(n^3 L) having cubic dependency on nn regardless of the bimatrix AA. Our algorithm can be extended to separable convex piecewise affine objectives as well, and also to systems defined by bimatrices with variable entries. Moreover, it can be used to define a hierarchy of approximations for any integer programming problem

    An Algorithmic Theory of Integer Programming

    Full text link
    We study the general integer programming problem where the number of variables nn is a variable part of the input. We consider two natural parameters of the constraint matrix AA: its numeric measure aa and its sparsity measure dd. We show that integer programming can be solved in time g(a,d)poly(n,L)g(a,d)\textrm{poly}(n,L), where gg is some computable function of the parameters aa and dd, and LL is the binary encoding length of the input. In particular, integer programming is fixed-parameter tractable parameterized by aa and dd, and is solvable in polynomial time for every fixed aa and dd. Our results also extend to nonlinear separable convex objective functions. Moreover, for linear objectives, we derive a strongly-polynomial algorithm, that is, with running time g(a,d)poly(n)g(a,d)\textrm{poly}(n), independent of the rest of the input data. We obtain these results by developing an algorithmic framework based on the idea of iterative augmentation: starting from an initial feasible solution, we show how to quickly find augmenting steps which rapidly converge to an optimum. A central notion in this framework is the Graver basis of the matrix AA, which constitutes a set of fundamental augmenting steps. The iterative augmentation idea is then enhanced via the use of other techniques such as new and improved bounds on the Graver basis, rapid solution of integer programs with bounded variables, proximity theorems and a new proximity-scaling algorithm, the notion of a reduced objective function, and others. As a consequence of our work, we advance the state of the art of solving block-structured integer programs. In particular, we develop near-linear time algorithms for nn-fold, tree-fold, and 22-stage stochastic integer programs. We also discuss some of the many applications of these classes.Comment: Revision 2: - strengthened dual treedepth lower bound - simplified proximity-scaling algorith

    Combinatorial Optimization

    Get PDF
    Combinatorial Optimization is a very active field that benefits from bringing together ideas from different areas, e.g., graph theory and combinatorics, matroids and submodularity, connectivity and network flows, approximation algorithms and mathematical programming, discrete and computational geometry, discrete and continuous problems, algebraic and geometric methods, and applications. We continued the long tradition of triannual Oberwolfach workshops, bringing together the best researchers from the above areas, discovering new connections, and establishing new and deepening existing international collaborations

    Euclidean distance geometry and applications

    Full text link
    Euclidean distance geometry is the study of Euclidean geometry based on the concept of distance. This is useful in several applications where the input data consists of an incomplete set of distances, and the output is a set of points in Euclidean space that realizes the given distances. We survey some of the theory of Euclidean distance geometry and some of the most important applications: molecular conformation, localization of sensor networks and statics.Comment: 64 pages, 21 figure

    Combinatorial Optimization

    Get PDF
    Combinatorial Optimization is an active research area that developed from the rich interaction among many mathematical areas, including combinatorics, graph theory, geometry, optimization, probability, theoretical computer science, and many others. It combines algorithmic and complexity analysis with a mature mathematical foundation and it yields both basic research and applications in manifold areas such as, for example, communications, economics, traffic, network design, VLSI, scheduling, production, computational biology, to name just a few. Through strong inner ties to other mathematical fields it has been contributing to and benefiting from areas such as, for example, discrete and convex geometry, convex and nonlinear optimization, algebraic and topological methods, geometry of numbers, matroids and combinatorics, and mathematical programming. Moreover, with respect to applications and algorithmic complexity, Combinatorial Optimization is an essential link between mathematics, computer science and modern applications in data science, economics, and industry
    corecore