22 research outputs found

    Boolean Satisfiability in Electronic Design Automation

    No full text
    Boolean Satisfiability (SAT) is often used as the underlying model for a significant and increasing number of applications in Electronic Design Automation (EDA) as well as in many other fields of Computer Science and Engineering. In recent years, new and efficient algorithms for SAT have been developed, allowing much larger problem instances to be solved. SAT “packages” are currently expected to have an impact on EDA applications similar to that of BDD packages since their introduction more than a decade ago. This tutorial paper is aimed at introducing the EDA professional to the Boolean satisfiability problem. Specifically, we highlight the use of SAT models to formulate a number of EDA problems in such diverse areas as test pattern generation, circuit delay computation, logic optimization, combinational equivalence checking, bounded model checking and functional test vector generation, among others. In addition, we provide an overview of the algorithmic techniques commonly used for solving SAT, including those that have seen widespread use in specific EDA applications. We categorize these algorithmic techniques, indicating which have been shown to be best suited for which tasks

    Transforming Equality Logic to Propositional Logic

    Get PDF
    We investigate and compare various ways of transforming equality formulas to propositional formulas, in order to be able to solve satisfiability in equality logic by means of satisfiability in propositional logic. We propose equality substitution as a new approach combining desirable properties of earlier methods, we prove its correctness and show its applicability by experiments

    Boolean satisfiability in electronic design automation

    Full text link

    Efficient data structures for backtrack search SAT solvers

    No full text
    The implementation of efficient Propositional Satisfiability (SAT) solvers entails the utilization of highly efficient data structures, as illustrated by most of the recent state-of-the-art SAT solvers. However, it is in general hard to compare existing data structures, since different solvers are often characterized by fairly different algorithmic organizations and techniques, and by different search strategies and heuristics. This paper aims the evaluation of data structures for backtrack search SAT solvers, under a common unbiased SAT framework. In addition, advantages and drawbacks of each existing data structure are identified. Finally, new data structures are proposed, that are competitive with the most efficient data structures currently available, and that may be preferable for the next generation SAT solvers

    An Overview of Backtrack Search Satisfiability Algorithms

    No full text
    Propositional Satisfiability (SAT) is often used as the underlying model for a significan

    Unified Characterisations of Resolution Hardness Measures

    Get PDF
    Various "hardness" measures have been studied for resolution, providing theoretical insight into the proof complexity of resolution and its fragments, as well as explanations for the hardness of instances in SAT solving. In this paper we aim at a unified view of a number of hardness measures, including different measures of width, space and size of resolution proofs. Our main contribution is a unified game-theoretic characterisation of these measures. As consequences we obtain new relations between the different hardness measures. In particular, we prove a generalised version of Atserias and Dalmau's result on the relation between resolution width and space

    Unified characterisations of resolution hardness measures

    Get PDF
    Various "hardness" measures have been studied for resolution, providing theoretical insight into the proof complexity of resolution and its fragments, as well as explanations for the hardness of instances in SAT solving. In this paper we aim at a unified view of a number of hardness measures, including different measures of width, space and size of resolution proofs. Our main contribution is a unified game-theoretic characterisation of these measures. As consequences we obtain new relations between the different hardness measures. In particular, we prove a generalised version of Atserias and Dalmau's result on the relation between resolution width and space from [5]

    MaxPre : An Extended MaxSAT Preprocessor

    Get PDF
    We describe MaxPre, an open-source preprocessor for (weighted partial) maximum satisfiability (MaxSAT). MaxPre implements both SAT-based and MaxSAT-specific preprocessing techniques, and offers solution reconstruction, cardinality constraint encoding, and an API for tight integration into SAT-based MaxSAT solvers.Peer reviewe
    corecore