12,517 research outputs found

    Parallel implementation of stochastic simulation for large-scale cellular processes

    Get PDF
    Experimental and theoretical studies have shown the importance of stochastic processes in genetic regulatory networks and cellular processes. Cellular networks and genetic circuits often involve small numbers of key proteins such as transcriptional factors and signaling proteins. In recent years stochastic models have been used successfully for studying noise in biological pathways, and stochastic modelling of biological systems has become a very important research field in computational biology. One of the challenge problems in this field is the reduction of the huge computing time in stochastic simulations. Based on the system of the mitogen-activated protein kinase cascade that is activated by epidermal growth factor, this work give a parallel implementation by using OpenMP and parallelism across the simulation. Special attention is paid to the independence of the generated random numbers in parallel computing, that is a key criterion for the success of stochastic simulations. Numerical results indicate that parallel computers can be used as an efficient tool for simulating the dynamics of large-scale genetic regulatory networks and cellular processes

    Delay Line as a Chemical Reaction Network

    Get PDF
    Chemistry as an unconventional computing medium presently lacks a systematic approach to gather, store, and sort data over time. To build more complicated systems in chemistries, the ability to look at data in the past would be a valuable tool to perform complex calculations. In this paper we present the first implementation of a chemical delay line providing information storage in a chemistry that can reliably capture information over an extended period of time. The delay line is capable of parallel operations in a single instruction, multiple data (SIMD) fashion. Using Michaelis-Menten kinetics, we describe the chemical delay line implementation featuring an enzyme acting as a means to reduce copy errors. We also discuss how information is randomly accessible from any element on the delay line. Our work shows how the chemical delay line retains and provides a value from a previous cycle. The system's modularity allows for integration with existing chemical systems. We exemplify the delay line capabilities by integration with a threshold asymmetric signal perceptron to demonstrate how it learns all 14 linearly separable binary functions over a size two sliding window. The delay line has applications in biomedical diagnosis and treatment, such as smart drug delivery.Comment: 9 pages, 11 figures, 6 table

    Optimization of Enzymatic Logic Gates and Networks for Noise Reduction and Stability

    Full text link
    Biochemical computing attempts to process information with biomolecules and biological objects. In this work we review our results on analysis and optimization of single biochemical logic gates based on enzymatic reactions, and a network of three gates, for reduction of the "analog" noise buildup. For a single gate, optimization is achieved by analyzing the enzymatic reactions within a framework of kinetic equations. We demonstrate that using co-substrates with much smaller affinities than the primary substrate, a negligible increase in the noise output from the logic gate is obtained as compared to the input noise. A network of enzymatic gates is analyzed by varying selective inputs and fitting standardized few-parameters response functions assumed for each gate. This allows probing of the individual gate quality but primarily yields information on the relative contribution of the gates to noise amplification. The derived information is then used to modify experimental single gate and network systems to operate them in a regime of reduced analog noise amplification.Comment: 7 pages in PD
    • …
    corecore