149,973 research outputs found

    Hallucinating optimal high-dimensional subspaces

    Full text link
    Linear subspace representations of appearance variation are pervasive in computer vision. This paper addresses the problem of robustly matching such subspaces (computing the similarity between them) when they are used to describe the scope of variations within sets of images of different (possibly greatly so) scales. A naive solution of projecting the low-scale subspace into the high-scale image space is described first and subsequently shown to be inadequate, especially at large scale discrepancies. A successful approach is proposed instead. It consists of (i) an interpolated projection of the low-scale subspace into the high-scale space, which is followed by (ii) a rotation of this initial estimate within the bounds of the imposed ``downsampling constraint''. The optimal rotation is found in the closed-form which best aligns the high-scale reconstruction of the low-scale subspace with the reference it is compared to. The method is evaluated on the problem of matching sets of (i) face appearances under varying illumination and (ii) object appearances under varying viewpoint, using two large data sets. In comparison to the naive matching, the proposed algorithm is shown to greatly increase the separation of between-class and within-class similarities, as well as produce far more meaningful modes of common appearance on which the match score is based.Comment: Pattern Recognition, 201

    Occlusion-Robust MVO: Multimotion Estimation Through Occlusion Via Motion Closure

    Full text link
    Visual motion estimation is an integral and well-studied challenge in autonomous navigation. Recent work has focused on addressing multimotion estimation, which is especially challenging in highly dynamic environments. Such environments not only comprise multiple, complex motions but also tend to exhibit significant occlusion. Previous work in object tracking focuses on maintaining the integrity of object tracks but usually relies on specific appearance-based descriptors or constrained motion models. These approaches are very effective in specific applications but do not generalize to the full multimotion estimation problem. This paper presents a pipeline for estimating multiple motions, including the camera egomotion, in the presence of occlusions. This approach uses an expressive motion prior to estimate the SE (3) trajectory of every motion in the scene, even during temporary occlusions, and identify the reappearance of motions through motion closure. The performance of this occlusion-robust multimotion visual odometry (MVO) pipeline is evaluated on real-world data and the Oxford Multimotion Dataset.Comment: To appear at the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). An earlier version of this work first appeared at the Long-term Human Motion Planning Workshop (ICRA 2019). 8 pages, 5 figures. Video available at https://www.youtube.com/watch?v=o_N71AA6FR

    Edge Potential Functions (EPF) and Genetic Algorithms (GA) for Edge-Based Matching of Visual Objects

    Get PDF
    Edges are known to be a semantically rich representation of the contents of a digital image. Nevertheless, their use in practical applications is sometimes limited by computation and complexity constraints. In this paper, a new approach is presented that addresses the problem of matching visual objects in digital images by combining the concept of Edge Potential Functions (EPF) with a powerful matching tool based on Genetic Algorithms (GA). EPFs can be easily calculated starting from an edge map and provide a kind of attractive pattern for a matching contour, which is conveniently exploited by GAs. Several tests were performed in the framework of different image matching applications. The results achieved clearly outline the potential of the proposed method as compared to state of the art methodologies. (c) 2007 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works

    Pruning training sets for learning of object categories

    Get PDF
    Training datasets for learning of object categories are often contaminated or imperfect. We explore an approach to automatically identify examples that are noisy or troublesome for learning and exclude them from the training set. The problem is relevant to learning in semi-supervised or unsupervised setting, as well as to learning when the training data is contaminated with wrongly labeled examples or when correctly labeled, but hard to learn examples, are present. We propose a fully automatic mechanism for noise cleaning, called ’data pruning’, and demonstrate its success on learning of human faces. It is not assumed that the data or the noise can be modeled or that additional training examples are available. Our experiments show that data pruning can improve on generalization performance for algorithms with various robustness to noise. It outperforms methods with regularization properties and is superior to commonly applied aggregation methods, such as bagging
    • …
    corecore