83,777 research outputs found

    A Random Attention Model

    Full text link
    This paper illustrates how one can deduce preference from observed choices when attention is not only limited but also random. In contrast to earlier approaches, we introduce a Random Attention Model (RAM) where we abstain from any particular attention formation, and instead consider a large class of nonparametric random attention rules. Our model imposes one intuitive condition, termed Monotonic Attention, which captures the idea that each consideration set competes for the decision-maker's attention. We then develop revealed preference theory within RAM and obtain precise testable implications for observable choice probabilities. Based on these theoretical findings, we propose econometric methods for identification, estimation, and inference of the decision maker's preferences. To illustrate the applicability of our results and their concrete empirical content in specific settings, we also develop revealed preference theory and accompanying econometric methods under additional nonparametric assumptions on the consideration set for binary choice problems. Finally, we provide general purpose software implementation of our estimation and inference results, and showcase their performance using simulations

    Abductively Robust Inference

    Get PDF
    Inference to the Best Explanation (IBE) is widely criticized for being an unreliable form of ampliative inference – partly because the explanatory hypotheses we have considered at a given time may all be false, and partly because there is an asymmetry between the comparative judgment on which an IBE is based and the absolute verdict that IBE is meant to license. In this paper, I present a further reason to doubt the epistemic merits of IBE and argue that it motivates moving to an inferential pattern in which IBE emerges as a degenerate limiting case. Since this inferential pattern is structurally similar to an argumentative strategy known as Inferential Robustness Analysis (IRA), it effectively combines the most attractive features of IBE and IRA into a unified approach to non-deductive inference

    Lipschitz Optimisation for Lipschitz Interpolation

    Full text link
    Techniques known as Nonlinear Set Membership prediction, Kinky Inference or Lipschitz Interpolation are fast and numerically robust approaches to nonparametric machine learning that have been proposed to be utilised in the context of system identification and learning-based control. They utilise presupposed Lipschitz properties in order to compute inferences over unobserved function values. Unfortunately, most of these approaches rely on exact knowledge about the input space metric as well as about the Lipschitz constant. Furthermore, existing techniques to estimate the Lipschitz constants from the data are not robust to noise or seem to be ad-hoc and typically are decoupled from the ultimate learning and prediction task. To overcome these limitations, we propose an approach for optimising parameters of the presupposed metrics by minimising validation set prediction errors. To avoid poor performance due to local minima, we propose to utilise Lipschitz properties of the optimisation objective to ensure global optimisation success. The resulting approach is a new flexible method for nonparametric black-box learning. We provide experimental evidence of the competitiveness of our approach on artificial as well as on real data

    Building an Expert System for Evaluation of Commercial Cloud Services

    Full text link
    Commercial Cloud services have been increasingly supplied to customers in industry. To facilitate customers' decision makings like cost-benefit analysis or Cloud provider selection, evaluation of those Cloud services are becoming more and more crucial. However, compared with evaluation of traditional computing systems, more challenges will inevitably appear when evaluating rapidly-changing and user-uncontrollable commercial Cloud services. This paper proposes an expert system for Cloud evaluation that addresses emerging evaluation challenges in the context of Cloud Computing. Based on the knowledge and data accumulated by exploring the existing evaluation work, this expert system has been conceptually validated to be able to give suggestions and guidelines for implementing new evaluation experiments. As such, users can conveniently obtain evaluation experiences by using this expert system, which is essentially able to make existing efforts in Cloud services evaluation reusable and sustainable.Comment: 8 page, Proceedings of the 2012 International Conference on Cloud and Service Computing (CSC 2012), pp. 168-175, Shanghai, China, November 22-24, 201

    A Point Decision For Partially Identified Auction Models

    Get PDF
    This paper proposes a decision theoretic method to choose a single reserve price for partially identified auction models, such as Haile and Tamer, 2003, using data on transaction prices from English auctions. The paper employs Gilboa and Schmeidler, 1989 for inference that is robust with respect to the prior over unidentified parameters. It is optimal to interpret the transaction price as the highest value, and maximize the posterior mean of the seller’s revenue. The Monte Carlo study shows substantial gains relative to the average revenues of the Haile and Tamer interval.
    corecore