329,576 research outputs found

    A pollen identification expert system ; an application of expert system techniques to biological identification : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Computer Science Massey University

    Get PDF
    The application of expert systems techniques to biological identification has been investigated and a system developed which assists a user to identify and count air-borne pollen grains. The present system uses a modified taxonomic data matrix as the structure for the knowledge base. This allows domain experts to easily assess and modify the knowledge using a familiar data structure. The data structure can be easily converted to rules or a simple frame-based structure if required for other applications. A method of ranking the importance of characters for identifying each taxon has been developed which assists the system to quickly narrow an identification by rejecting or accepting candidate taxa. This method is very similar to that used by domain experts

    From Data Topology to a Modular Classifier

    Full text link
    This article describes an approach to designing a distributed and modular neural classifier. This approach introduces a new hierarchical clustering that enables one to determine reliable regions in the representation space by exploiting supervised information. A multilayer perceptron is then associated with each of these detected clusters and charged with recognizing elements of the associated cluster while rejecting all others. The obtained global classifier is comprised of a set of cooperating neural networks and completed by a K-nearest neighbor classifier charged with treating elements rejected by all the neural networks. Experimental results for the handwritten digit recognition problem and comparison with neural and statistical nonmodular classifiers are given

    What is Computational Intelligence and where is it going?

    Get PDF
    What is Computational Intelligence (CI) and what are its relations with Artificial Intelligence (AI)? A brief survey of the scope of CI journals and books with ``computational intelligence'' in their title shows that at present it is an umbrella for three core technologies (neural, fuzzy and evolutionary), their applications, and selected fashionable pattern recognition methods. At present CI has no comprehensive foundations and is more a bag of tricks than a solid branch of science. The change of focus from methods to challenging problems is advocated, with CI defined as a part of computer and engineering sciences devoted to solution of non-algoritmizable problems. In this view AI is a part of CI focused on problems related to higher cognitive functions, while the rest of the CI community works on problems related to perception and control, or lower cognitive functions. Grand challenges on both sides of this spectrum are addressed

    Sejarah, Penerapan, dan Analisis Resiko dari Neural Network: Sebuah Tinjauan Pustaka

    Get PDF
    A neural network is a form of artificial intelligence that has the ability to learn, grow, and adapt in a dynamic environment. Neural network began since 1890 because a great American psychologist named William James created the book "Principles of Psycology". James was the first one publish a number of facts related to the structure and function of the brain. The history of neural network development is divided into 4 epochs, the Camelot era, the Depression, the Renaissance, and the Neoconnectiosm era. Neural networks used today are not 100 percent accurate. However, neural networks are still used because of better performance than alternative computing models. The use of neural network consists of pattern recognition, signal analysis, robotics, and expert systems. For risk analysis of the neural network, it is first performed using hazards and operability studies (HAZOPS). Determining the neural network requirements in a good way will help in determining its contribution to system hazards and validating the control or mitigation of any hazards. After completion of the first stage at HAZOPS and the second stage determines the requirements, the next stage is designing. Neural network underwent repeated design-train-test development. At the design stage, the hazard analysis should consider the design aspects of the development, which include neural network architecture, size, intended use, and so on. It will be continued at the implementation stage, test phase, installation and inspection phase, operation phase, and ends at the maintenance stage

    Biologically Inspired Approaches to Automated Feature Extraction and Target Recognition

    Full text link
    Ongoing research at Boston University has produced computational models of biological vision and learning that embody a growing corpus of scientific data and predictions. Vision models perform long-range grouping and figure/ground segmentation, and memory models create attentionally controlled recognition codes that intrinsically cornbine botton-up activation and top-down learned expectations. These two streams of research form the foundation of novel dynamically integrated systems for image understanding. Simulations using multispectral images illustrate road completion across occlusions in a cluttered scene and information fusion from incorrect labels that are simultaneously inconsistent and correct. The CNS Vision and Technology Labs (cns.bu.edulvisionlab and cns.bu.edu/techlab) are further integrating science and technology through analysis, testing, and development of cognitive and neural models for large-scale applications, complemented by software specification and code distribution.Air Force Office of Scientific Research (F40620-01-1-0423); National Geographic-Intelligence Agency (NMA 201-001-1-2016); National Science Foundation (SBE-0354378; BCS-0235298); Office of Naval Research (N00014-01-1-0624); National Geospatial-Intelligence Agency and the National Society of Siegfried Martens (NMA 501-03-1-2030, DGE-0221680); Department of Homeland Security graduate fellowshi

    The assessment of usability of electronic shopping: A heuristic evaluation

    Get PDF
    Today there are thousands of electronic shops accessible via the Web. Some provide user-friendly features whilst others seem not to consider usability factors at all. Yet, it is critical that the electronic shopping interface is user-friendly so as to help users to obtain their desired results. This study applied heuristic evaluation to examine the usability of current electronic shopping. In particular, it focused on four UK-based supermarkets offering electronic services: including ASDA, Iceland, Sainsbury, and Tesco. The evaluation consists of two stages: a free-flow inspection and a task-based inspection. The results indicate that the most significant and common usability problems have been found to lie within the areas of ‘User Control and Freedom’ and ‘Help and Documentation’. The findings of this study are applied to develop a set of usability guidelines to support the future design of effective interfaces for electronic shopping

    Knowledge data discovery and data mining in a design environment

    Get PDF
    Designers, in the process of satisfying design requirements, generally encounter difficulties in, firstly, understanding the problem and secondly, finding a solution [Cross 1998]. Often the process of understanding the problem and developing a feasible solution are developed simultaneously by proposing a solution to gauge the extent to which the solution satisfies the specific requirements. Support for future design activities has long been recognised to exist in the form of past design cases, however the varying degrees of similarity and dissimilarity found between previous and current design requirements and solutions has restrained the effectiveness of utilising past design solutions. The knowledge embedded within past designs provides a source of experience with the potential to be utilised in future developments provided that the ability to structure and manipulate that knowledgecan be made a reality. The importance of providing the ability to manipulate past design knowledge, allows the ranging viewpoints experienced by a designer, during a design process, to be reflected and supported. Data Mining systems are gaining acceptance in several domains but to date remain largely unrecognised in terms of the potential to support design activities. It is the focus of this paper to introduce the functionality possessed within the realm of Data Mining tools, and to evaluate the level of support that may be achieved in manipulating and utilising experiential knowledge to satisfy designers' ranging perspectives throughout a product's development
    • …
    corecore