4,206 research outputs found

    The Reticulation of a Universal Algebra

    Get PDF
    The reticulation of an algebra AA is a bounded distributive lattice L(A){\cal L}(A) whose prime spectrum of filters or ideals is homeomorphic to the prime spectrum of congruences of AA, endowed with the Stone topologies. We have obtained a construction for the reticulation of any algebra AA from a semi-degenerate congruence-modular variety C{\cal C} in the case when the commutator of AA, applied to compact congruences of AA, produces compact congruences, in particular when C{\cal C} has principal commutators; furthermore, it turns out that weaker conditions than the fact that AA belongs to a congruence-modular variety are sufficient for AA to have a reticulation. This construction generalizes the reticulation of a commutative unitary ring, as well as that of a residuated lattice, which in turn generalizes the reticulation of a BL-algebra and that of an MV-algebra. The purpose of constructing the reticulation for the algebras from C{\cal C} is that of transferring algebraic and topological properties between the variety of bounded distributive lattices and C{\cal C}, and a reticulation functor is particularily useful for this transfer. We have defined and studied a reticulation functor for our construction of the reticulation in this context of universal algebra.Comment: 29 page

    ‎On The Spectrum of Countable MV-algebras

    Get PDF
    ‎In this paper we consider MV-algebras and their prime spectrum‎. ‎We show that there is an uncountable MV-algebra that has the same spectrum as the free MV-algebra over one element‎, ‎that is‎, ‎the MV-algebra Free1Free_1 of McNaughton functions from [0,1][0,1] to [0,1][0,1]‎, ‎the continuous‎, ‎piecewise linear functions with integer coefficients‎. ‎The construction is heavily based on Mundici equivalence between MV-algebras and lattice ordered abelian groups with the strong unit‎. ‎Also‎, ‎we heavily use the fact that two MV-algebras have the same spectrum if and only if their lattice of principal ideals is isomorphic‎.‎As an intermediate step we consider the MV-algebra A1A_1 of continuous‎, ‎piecewise linear functions with rational coefficients‎. ‎It is known that A1A_1 contains Free1Free_1‎, ‎and that A1A_1 and Free1Free_1 are equispectral‎. ‎However‎, ‎A1A_1 is in some sense easy to work with than Free1Free_1‎. Now‎, ‎A1A_1 is still countable‎. ‎To build an equispectral uncountable MV-algebra A2A_2‎, ‎we consider certain ``almost rational'' functions on [0,1][0,1]‎, ‎which are rational in every initial segment of [0,1][0,1]‎, ‎but which can have an irrational limit in 11‎.‎We exploit heavily‎, ‎via Mundici equivalence‎, ‎the properties of divisible lattice ordered abelian groups‎, ‎which have an additional structure of vector spaces over the rational field‎

    Sheaf representations of MV-algebras and lattice-ordered abelian groups via duality

    Full text link
    We study representations of MV-algebras -- equivalently, unital lattice-ordered abelian groups -- through the lens of Stone-Priestley duality, using canonical extensions as an essential tool. Specifically, the theory of canonical extensions implies that the (Stone-Priestley) dual spaces of MV-algebras carry the structure of topological partial commutative ordered semigroups. We use this structure to obtain two different decompositions of such spaces, one indexed over the prime MV-spectrum, the other over the maximal MV-spectrum. These decompositions yield sheaf representations of MV-algebras, using a new and purely duality-theoretic result that relates certain sheaf representations of distributive lattices to decompositions of their dual spaces. Importantly, the proofs of the MV-algebraic representation theorems that we obtain in this way are distinguished from the existing work on this topic by the following features: (1) we use only basic algebraic facts about MV-algebras; (2) we show that the two aforementioned sheaf representations are special cases of a common result, with potential for generalizations; and (3) we show that these results are strongly related to the structure of the Stone-Priestley duals of MV-algebras. In addition, using our analysis of these decompositions, we prove that MV-algebras with isomorphic underlying lattices have homeomorphic maximal MV-spectra. This result is an MV-algebraic generalization of a classical theorem by Kaplansky stating that two compact Hausdorff spaces are homeomorphic if, and only if, the lattices of continuous [0, 1]-valued functions on the spaces are isomorphic.Comment: 36 pages, 1 tabl
    • …
    corecore