6,227 research outputs found

    Resilience of Traffic Networks with Partially Controlled Routing

    Full text link
    This paper investigates the use of Infrastructure-To-Vehicle (I2V) communication to generate routing suggestions for drivers in transportation systems, with the goal of optimizing a measure of overall network congestion. We define link-wise levels of trust to tolerate the non-cooperative behavior of part of the driver population, and we propose a real-time optimization mechanism that adapts to the instantaneous network conditions and to sudden changes in the levels of trust. Our framework allows us to quantify the improvement in travel time in relation to the degree at which drivers follow the routing suggestions. We then study the resilience of the system, measured as the smallest change in routing choices that results in roads reaching their maximum capacity. Interestingly, our findings suggest that fluctuations in the extent to which drivers follow the provided routing suggestions can cause failures of certain links. These results imply that the benefits of using Infrastructure-To-Vehicle communication come at the cost of new fragilities, that should be appropriately addressed in order to guarantee the reliable operation of the infrastructure.Comment: Accepted for presentation at the IEEE 2019 American Control Conferenc

    The Green Choice: Learning and Influencing Human Decisions on Shared Roads

    Full text link
    Autonomous vehicles have the potential to increase the capacity of roads via platooning, even when human drivers and autonomous vehicles share roads. However, when users of a road network choose their routes selfishly, the resulting traffic configuration may be very inefficient. Because of this, we consider how to influence human decisions so as to decrease congestion on these roads. We consider a network of parallel roads with two modes of transportation: (i) human drivers who will choose the quickest route available to them, and (ii) ride hailing service which provides an array of autonomous vehicle ride options, each with different prices, to users. In this work, we seek to design these prices so that when autonomous service users choose from these options and human drivers selfishly choose their resulting routes, road usage is maximized and transit delay is minimized. To do so, we formalize a model of how autonomous service users make choices between routes with different price/delay values. Developing a preference-based algorithm to learn the preferences of the users, and using a vehicle flow model related to the Fundamental Diagram of Traffic, we formulate a planning optimization to maximize a social objective and demonstrate the benefit of the proposed routing and learning scheme.Comment: Submitted to CDC 201

    Game Theory Models for the Verification of the Collective Behaviour of Autonomous Cars

    Get PDF
    The collective of autonomous cars is expected to generate almost optimal traffic. In this position paper we discuss the multi-agent models and the verification results of the collective behaviour of autonomous cars. We argue that non-cooperative autonomous adaptation cannot guarantee optimal behaviour. The conjecture is that intention aware adaptation with a constraint on simultaneous decision making has the potential to avoid unwanted behaviour. The online routing game model is expected to be the basis to formally prove this conjecture.Comment: In Proceedings FVAV 2017, arXiv:1709.0212
    • …
    corecore