4,597 research outputs found

    센티미터 급 광역 보강항법 시스템의 반송파 위상 기반 보정정보 생성 알고리즘에 관한 연구

    Get PDF
    학위논문(박사)--서울대학교 대학원 :공과대학 기계항공공학부,2020. 2. 기창돈.Recently, the demand for high-precision navigation systems for centimeter-level service has been growing rapidly for various Global Navigation Satellite System (GNSS) applications. The network Real-Time Kinematic (RTK) is one of the candidate solution to provide high-accuracy position to user in real-time. However, the network RTK requires a lot of reference stations for nationwide service. Furthermore, it requires high-speed data-link for broadcasting their scalar-type corrections. This dissertation proposed a new concept of satellite augmentation system called Compact Wide-Area RTK, which provides centimeter-level positioning service on national or continental scales to overcoming the limitation of the legacy network RTK methods. Using the wide-area network of multiple reference stations whose distance is 200~1,000 km, the proposed system generates three types of carrier-phase-based corrections: satellite orbit corrections, satellite code/phase clock (CPC) corrections, tropospheric corrections. Through the strategy of separating the scalar-type corrections of network RTK into vector forms of each error component, it is enable to expand network RTK coverage to continental scale using a similar number of reference stations as legacy meter-level Satellite-Based Augmentation System (SBAS). Furthermore, it is possible to broadcast their corrections over a wide-area using geosynchronous (GEO) satellite with extremely low-speed datalink of 250 bps likewise of legacy SBAS. To sum up, the proposed system can improve position accuracy by centimeter-level while maintaining the hardware infrastructure of the meter-level legacy SBAS. This study mainly discussed on the overall system architecture and core algorithms for generating satellite CPC corrections and tropospheric corrections. This study proposed a new Three-Carrier Ambiguity Resolution (TCAR) algorithm using ionosphere-free combinations to correctly solve the integer ambiguity in wide-area without any ionospheric corrections. The satellite CPC corrections are calculated based on multiple stations for superior and robust performance under communication delay and outage. The proposed algorithm dramatically reduced the latency compensation errors and message amounts with compare to conventional RTK protocols. The tropospheric corrections of the compact wide-area RTK system are computed using GPS-estimated precise tropospheric delay and weather data based model together. The proposed algorithm adopts spherical harmonics function to significantly reduce the message amounts and required number of GPS reference stations than the network RTK and Precise Point Positioning-RTK (PPP-RTK), while accurately modeling the spatial characteristic of tropospheric delay with weather data together. In order to evaluate the user domain performance of the compact wide-area RTK system, this study conducted the feasibility test on mid-west and south USA using actual GPS measurements. As a result, the 95% horizontal position error is about 1.9 cm and the 95% vertical position error is 7.0 cm after the integer ambiguity is correctly fixed using GPS-only signals. The user ambiguity resolution takes about 2 minutes, and success-fix rate is about 100 % when stable tropospheric condition. In conclusion, the compact wide-area RTK system can provide centimeter-level positioning service to wide-area coverage with extremely low-speed data link via GEO satellite. We hope that this new system will consider as candidate solution for nationwide centimeter-level service such as satellite augmentation system of the Korea Positioning System (KPS).최근 자율주행자동차, 무인 드론 배송, 충돌 회피, 무인트랙터를 이용한 스마트 무인 경작 등 위성항법시스템(GNSS, Global Navigation Satellite System)을 사용하는 다양한 응용분야에서 수 cm 수준의 정밀 위치 정보에 대한 요구가 급격히 증가하고 있다. 본 학위논문에서는 1 m 급의 정확하고 신뢰성 높은 위치 서비스를 제공하는 기존의 정지궤도위성 기반 광역 보강항법 시스템(SBAS, Satellite-Based Augmentation System)의 기준국 인프라를 유지하면서 항법 성능을 수 cm 수준으로 향상시키기 위해 반송파 위상 기반의 초정밀 보정정보 생성 알고리즘에 관한 연구를 수행하였다. 실시간 정밀 측위(RTK, Real-Time Kinematic)는 반송파 위상 측정치에 포함된 미지정수를 정확하게 결정하여 수 cm 수준의 정밀 항법 서비스를 가능하게 하는 대표적인 기법이다. 그 중에서도 약 50~70 km 간격으로 분포된 다수의 기준국 정보를 활용하는 Network RTK 기법은 동적 사용자의 빠르고 정확한 위치 결정이 가능한 인프라로서 주목받고 있다. 하지만 스칼라 형태로 구성된 Network RTK 보정정보는 각 기준국 별로 관측된 위성 수에 따라 생성이 되기 때문에 보정 데이터 량이 상당히 방대하다. 메시지 전송에 필요한 데이터 량이 많을수록 고속의 통신 환경을 필요로 하며, 메시지 시간 지연이나 통신 단절에 매우 취약한 문제를 가지고 있다. 또한 스칼라 형태의 보정정보는 사용자와 기준국 간의 거리가 멀어질수록 보정 오차가 크게 발생하기 때문에 대륙 혹은 나라 규모의 광역에서 서비스하기 위해서는 수십~수백 개 이상의 기준국 인프라 구축이 필수적이다. 예를 들어, SBAS가 한반도 지역 서비스를 위해 5~7개의 기준국이 필요한 반면 Network RTK는 90~100개의 기준국이 필요하다. 즉 Network RTK는 시스템 구축 및 유지 비용이 SBAS 대비 약 15배 정도 많이 들게 된다. 본 논문에서는 기존 Network RTK의 문제점을 해결하기 위한 방법으로 대륙 급 광범위한 영역에서 실시간으로 cm급 초정밀 위치결정 서비스 제공이 가능한 Compact Wide-Area RTK 라는 새로운 개념의 광역보강항법시스템 아키텍처를 제안하였다. Compact Wide-Area RTK는 약 200~1,000 km 간격으로 넓게 분포된 기준국 네트워크를 활용하여 반송파 위상 기반의 정밀한 위성 궤도 보정정보, 위성 Code/Phase 시계 보정정보, 대류층 보정정보를 생성하는 시스템이다. 기존 스칼라 형태의 Network RTK 보정정보 대신 오차 요소 별 벡터 형태의 정밀 보정정보를 생성함으로써 데이터 량을 획기적으로 절감하고 서비스 영역을 확장할 수 있다. 최종적으로 SBAS와 마찬가지로 250 bps의 저속 통신 링크를 가진 정지궤도위성을 통해 광역으로 보정정보 방송이 가능하다. 본 논문에서는 3가지 보정정보 중 위성 Code/Phase 시계 보정정보와 대류층 보정정보 생성을 위한 핵심 알고리즘에 대해 중점적으로 연구하였다. 반송파 위상 기반의 정밀 보정정보 생성을 위해서는 먼저 미지정수를 정확하게 결정해야 한다. 본 논문에서는 삼중 주파수 반송파 위상 측정치의 무-전리층 조합을 활용하여 전리층 보정정보 없이도 정확하게 미지정수 결정 가능한 새로운 방법을 제안하였다. 위성 Code/Phase 시계 보정정보는 통신 지연 및 고장 시 우수하고 강건한 성능을 위해 다중 기준국의 모든 측정치를 활용하여 추정된다. 이 때 각 기준국 별 서로 다른 미지정수 때문에 발생하는 문제는 앞서 정확하게 결정된 기준국 간 이중차분 된 미지정수를 활용하여 수준을 조정하는 과정을 통해 해결이 가능하다. 그 결과 생성된 위성 Code/Phase 보정정보 메시지의 크기, 변화율, 잡음 수준이 크게 개선되었고, 통신 지연 시 오차 보상 성능이 기존 RTK 프로토콜 보다 99% 향상 됨을 확인하였다. 대류층 보정정보는 적은 수의 기준국 만을 활용하여 정확하게 대류층을 모델링하기 위해 자동 기상관측시스템으로부터 수집한 기상 정보를 추가로 활용하여 생성된다. 본 논문에서는 GNSS 기준국 네트워크로부터 정밀하게 추정된 반송파 위상 기반 수직 대류층 지연과 기상정보 기반으로 모델링 된 수직 대류층 지연을 함께 활용할 수 있는 새로운 알고리즘을 제안하였다. 구면조화함수를 사용하여 Network RTK 및 PPP-RTK 보다 필요한 메시지 양과 기준국 수를 크게 감소시키면서도 RMS 2 cm 수준으로 정확한 보정정보 생성이 가능함을 확인하였다. 본 논문에서 제안한 Compact Wide-Area RTK 시스템의 항법 성능을 검증하기 위해 미국 동부 지역 6개 기준국의 실측 GPS 데이터를 활용하여 테스트를 수행하였다. 그 결과 제안한 시스템은 미지정수 결정 이후 사용자의 95% 수평 위치 오차 1.9 cm, 95% 수직 위치 오차 7.0 cm 로 위치를 정확하게 결정하였다. 사용자 미지정수 결정 성능은 대류층 안정 상태에서 약 2분 내로 100% 의 성공률을 가진다. 본 논문에서 제안한 시스템이 향후 한국형 위성항법 시스템(KPS, Korean Positioning System)의 전국 단위 센티미터 급 서비스를 위한 알고리즘으로 활용되기를 기대한다.CHAPTER 1. Introduction 1 1.1 Motivation and Purpose 1 1.2 Former Research 4 1.3 Outline of the Dissertation 7 1.4 Contributions 8 CHAPTER 2. Overview of GNSS Augmentation System 11 2.1 GNSS Measurements 11 2.2 GNSS Error Sources 14 2.2.1 Traditional GNSS Error Sources 14 2.2.2 Special GNSS Error Sources 21 2.2.3 Summary 28 2.3 GNSS Augmentation System 29 2.3.1 Satellite-Based Augmentation System (SBAS) 29 2.3.2 Real-Time Kinematic (RTK) 32 2.3.3 Precise Point Positioning (PPP) 36 2.3.4 Summary 40 CHAPTER 3. Compact Wide-Area RTK System Architecture 43 3.1 Compact Wide-Area RTK Architecture 43 3.1.1 WARTK Reference Station (WRS) 48 3.1.2 WARTK Processing Facility (WPF) 51 3.1.3 WARTK User 58 3.2 Ambiguity Resolution and Validation Algorithms of Compact Wide-Area RTK System 59 3.2.1 Basic Theory of Ambiguity Resolution and Validation 60 3.2.2 A New Ambiguity Resolution Algorithms for Multi-Frequency Signals 65 3.2.3 Extra-Wide-Lane (EWL) Ambiguity Resolution 69 3.2.4 Wide-Lane (WL) Ambiguity Resolution 71 3.2.5 Narrow-Lane (NL) Ambiguity Resolution 78 3.3 Compact Wide-Area RTK Corrections 83 3.3.1 Satellite Orbit Corrections 86 3.3.2 Satellite Code/Phase Clock (CPC) Corrections 88 3.3.3 Tropospheric Corrections 89 3.3.4 Message Design for GEO Broadcasting 90 CHAPTER 4. Code/Phase Clock (CPC) Correction Generation Algorithm 93 4.1 Former Research of RTK Correction Protocol 93 4.1.1 Observation Based RTK Data Protocol 93 4.1.2 Correction Based RTK Data Protocol 95 4.1.3 Compact RTK Protocol 96 4.2 Satellite CPC Correction Generation Algorithm 100 4.2.1 Temporal Decorrelation Error Reduced Methods 102 4.2.2 Ambiguity Level Adjustment 105 4.2.3 Receiver Clock Synchronization 107 4.2.4 Averaging Filter of Satellite CPC Correction 108 4.2.5 Ambiguity Re-Initialization and Message Generation 109 4.3 Correction Performance Analysis Results 111 4.3.1 Feasibility Test Environments 111 4.3.2 Comparison of RTK Correction Protocol 113 4.3.3 Latency Compensation Performance Analysis 116 4.3.4 Message Data Bandwidth Analysis 119 CHAPTER 5. Tropospheric Correction Generation Algorithm 123 5.1 Former Research of Tropospheric Correction 123 5.1.1 Tropospheric Corrections for SBAS 124 5.1.2 Tropospheric Corrections of Network RTK 126 5.1.3 Tropospheric Corrections of PPP-RTK 130 5.2 Tropospheric Correction Generation Algorithm 136 5.2.1 ZWD Estimation Using Carrier-Phase Observations 138 5.2.2 ZWD Measurements Using Weather Data 142 5.2.3 Correction Generation Using Spherical Harmonics 149 5.2.4 Correction Applying Method for User 157 5.3 Correction Performance Analysis Results 159 5.3.1 Feasibility Test Environments 159 5.3.2 Zenith Correction Domain Analysis 161 5.3.3 Message Data Bandwidth Analysis 168 CHAPTER 6. Compact Wide-Area RTK User Test Results 169 6.1 Compact Wide-Area RTK User Process 169 6.2 User Performance Test Results 173 6.2.1 Feasibility Test Environments 173 6.2.2 User Range Domain Analysis 176 6.2.3 User Ambiguity Domain Analysis 182 6.2.4 User Position Domain Analysis 184 CHAPTER 7. Conclusions 189 Bibliography 193 초 록 207Docto

    Analysis of Precipitable Water Vapour in Angola Using GNSS Observations

    Get PDF
    For accurate weather predictions and analysis of extreme events, a good estimate of the amount of water content in the atmosphere is essential. This information is provided by several techniques like radiosondes that measure this parameter at various heights. However, most of them are very limited spatially and temporarily or suffer from measurement specific constraints. To complement these techniques, Precipitable Water Vapor (PWV) can be measured with GNSS (Global Navigation Satellite System) at CORS (Continuously Operating Reference Stations) networks. when the temperature and pressure are also known at the station location. PWV can be derived from the delay in the GNSS signal when it passes through the troposphere. In the framework of SUGGEST-AFRICA, it is being implemented a system to use the national GNSS stations for the automatic computation of PWV in Angola. Thus, this dissertation intends to describe the necessary steps to develop a system to be used for supporting meteorological and climate applications in Angola. SUGGEST-AFRICA also funded the installation of 5 weather stations, collocated with GNSS stations in Angola namely: Benguela, Cabinda, Cuito, Luanda and Namibe, in order to obtain pressure and temperature which is necessary to obtain the PWV estimates. When there are no nearby meteorological stations, the potential alternative is to use values from global/regional models. Methodologies have been optimized to passive and actively access the GNSS data; the PWV estimations are computed using PPP (Precise Point Positioning), which permits the estimation of each station separately; solutions have been validated using internal values. In addition, analyses are presented to evaluate the reliability of the network. This work presents preliminary results for the variation of the ZTD data available all around the territory in Angola and how they relate to the seasonal variations in water vapour. Also, presents preliminary results for the time-series variation of PWV in the Luanda station (collocated by the SEGAL group). This study is supported by SUGGEST-AFRICA, funded by Fundação Aga Khan and FCT. It uses computational resources provided by C4G – Collaboratory for Geosciences (PINFRA/22151/2016). It is also supported by project FCT/UIDB/50019/2020 – IDL funded by FCT.Para precisão da previsão do tempo e análise de eventos extremos é fundamental uma boa estimativa do vapor da água na atmosfera. O vapor da água na atmosfera é fornecido por várias técnicas como radio sondagem que mede este parâmetro em várias alturas. No entanto, muito dessas técnicas são limitadas devido a resolução espacial e temporal ou sofrem restrições específicas de medição. Para completar estas limitações encontrado nas demais técnicas, o vapor da água precipitável (PWV) pode ser medido pelo GNSS (Sistemas de navegação global por satélite) CORS (Rede nacional de estações de referência de operação continua). PWV pode ser obtido a partir do atraso do sinal de GNSS através da troposfera, quando a temperatura e a pressão também são conhecidas derivado da localização duma estação meteorológica. No âmbito da SUGGEST-ÁFRICA, esta ser implementado um sistema de modo a calcular o PWV de uma maneira automática em Angola. Assim, nesta dissertação pretende descrever os passos necessários para desenvolver tal sistema a ser utilizado para apoiar aplicações meteorológicas e climáticas em Angola. SUGGEST-ÁFRICA também financiou a instalação de 5 estações meteorológicas, colocada com estações GNSS em Angola, nomeadamente: Benguela, Cabinda, Cuito, Luanda e Namibe, a fim de obter a pressão e a temperatura necessárias para obter as estimativas PWV. Aconselha-se o uso dos modelos globais/regionais para aquisição de valores de pressão e temperatura quando não existe dados nas estações meteorológicas adjacentes. As metodologias foram otimizadas para o acesso passivo e ativo dos dados GNSS; a estimação do vapor de água precipitável é calculada usando a técnica PPP (Posicionamento do ponto preciso), que permite a determinação de cada estação individualmente e separadamente; as soluções foram validadas usando valor interno. Além disso, são apresentadas análises para avaliar a fiabilidade da rede. Este trabalho, também apresenta resultados preliminares para a variação de todo dados do ZTD disponível em Angola e a forma como se relacionam com as variações sazonais do vapor de água. Também, apresenta variação da série temporal do PWV na estação meteorológica de Luanda (instalado pela SEGAL). Este estudo é suportado pela SUGGEST-ÁFRICA, financiado pela fundação Aga Khan e FCT. Utiliza recurso computacional fornecido pela C4G – Colaboração de Geociências (PINFRA/ 22151/2016). Também é apoiado pelo projecto FCT/UIDB/50019/2020 – IDL financiado pela FCT

    Precise Orbit Determination of CubeSats

    Get PDF
    CubeSats are faced with some limitations, mainly due to the limited onboard power and the quality of the onboard sensors. These limitations significantly reduce CubeSats' applicability in space missions requiring high orbital accuracy. This thesis first investigates the limitations in the precise orbit determination of CubeSats and next develops algorithms and remedies to reach high orbital and clock accuracies. The outputs would help in increasing CubeSats' applicability in future space missions

    IGS Technical Report 2013

    Get PDF
    Applications of the Global Navigation Satellite Systems (GNSS) to Earth Sciences are numerous. The International GNSS Service (IGS), a federation of government agencies, universities and research institutions, plays an increasingly critical role in support of GNSS–related research and engineering activities. This Technical Report 2013 includes contributions from the IGS Governing Board, the Central Bureau, Analysis Centers, Data Centers, station and network operators, and others highlighting status and important activities, changes and results that took place and were achieved during 2013
    corecore