717 research outputs found

    Classification of Cardiotocography Data with WEKA

    Get PDF
    Cardiotocography (CTG) records fetal heart rate (FHR) and uterine contractions (UC) simultaneously. Cardiotocography trace patterns help doctors to understand the state of the fetus. Even after the introduction of cardiotocograph, the capacity to predict is still inaccurate. This paper evaluates some commonly used classification methods using WEKA. Precision,Recall, F-Measrue and ROC curve have been used as the metric to evaluate the performance of classifiers. As opposed to some of the earlier research works that were unable to identify Suspicious and Pathologic patterns, the results obtained from the study in this paper could precisely identify pathologic and Suspicious cases. Best results were obtained from J48, Random Forest and Classification via Regression

    Multimodal Convolutional Neural Networks to Detect Fetal Compromise During Labor and Delivery

    Get PDF
    The gold standard to assess whether a baby is at risk of oxygen deprivation during childbirth, is monitoring continuously the fetal heart rate with cardiotocography (CTG). The aim is to identify babies that could benefit from an emergency operative delivery (e.g., Cesarean section), in order to prevent death or permanent brain injury. The long, dynamic and complex CTG patterns are poorly understood and known to have high false positive and false negative rates. Visual interpretation by clinicians is challenging and reliable accurate fetal monitoring in labor remains an enormous unmet medical need. In this work, we applied deep learning methods to achieve data-driven automated CTG evaluation. Multimodal Convolutional Neural Network (MCNN) and Stacked MCNN models were used to analyze the largest available database of routinely collected CTG and linked clinical data (comprising more than 35000 births). We also assessed in detail the impact of the signal quality on the MCNN performance. On a large hold-out testing set from Oxford (n= 4429 births), MCNN improved the prediction of cord acidemia at birth when compared with Clinical Practice and previous computerized approaches. On two external datasets, MCNN demonstrated better performance compared to current feature extraction-based methods. Our group is the first to apply deep learning for the analysis of CTG. We conclude that MCNN hold potential for the prediction of cord acidemia at birth and further work is warranted. Despite the advances, our deep learning models are currently not suitable for the detection of severe fetal injury in the absence of cord acidemia - a heterogeneous, small, and poorly understood group. We suggest that the most promising way forward are hybrid approaches to CTG interpretation in labor, in which different diagnostic models can estimate the risk for different types of fetal compromise, incorporating clinical knowledge with data-driven analyses

    Computational intelligence methods for predicting fetal outcomes from heart rate patterns

    Get PDF
    In this thesis, methods for evaluating the fetal state are compared to make predictions based on Cardiotocography (CTG) data. The first part of this research is the development of an algorithm to extract features from the CTG data. A feature extraction algorithm is presented that is capable of extracting most of the features in the SISPORTO software package as well as late and variable decelerations. The resulting features are used for classification based on both U.S. National Institutes of Health (NIH) categories and umbilical cord pH data. The first experiment uses the features to classify the results into three different categories suggested by the NIH and commonly being used in practice in hospitals across the United States. In addition, the algorithms developed here were used to predict cord pH levels, the actual condition that the three NIH categories are used to attempt to measure. This thesis demonstrates the importance of machine learning in Maternal and Fetal Medicine. It provides assistance for the obstetricians in assessing the state of the fetus better than the category methods, as only about 30% of the patients in the Pathological category suffer from acidosis, while the majority of acidotic babies were in the suspect category, which is considered lower risk. By predicting the direct indicator of acidosis, umbilical cord pH, this work demonstrates a methodology to achieve a more accurate prediction of fetal outcomes using Fetal Heartrate and Uterine Activity with accuracies of greater than 99.5% for predicting categories and greater than 70% for fetal acidosis based on pH values --Abstract, page iii

    A Comprehensive Review of Techniques for Processing and Analyzing Fetal Heart Rate Signals

    Get PDF
    The availability of standardized guidelines regarding the use of electronic fetal monitoring (EFM) in clinical practice has not effectively helped to solve the main drawbacks of fetal heart rate (FHR) surveillance methodology, which still presents inter- and intra-observer variability as well as uncertainty in the classification of unreassuring or risky FHR recordings. Given the clinical relevance of the interpretation of FHR traces as well as the role of FHR as a marker of fetal wellbeing autonomous nervous system development, many different approaches for computerized processing and analysis of FHR patterns have been proposed in the literature. The objective of this review is to describe the techniques, methodologies, and algorithms proposed in this field so far, reporting their main achievements and discussing the value they brought to the scientific and clinical community. The review explores the following two main approaches to the processing and analysis of FHR signals: traditional (or linear) methodologies, namely, time and frequency domain analysis, and less conventional (or nonlinear) techniques. In this scenario, the emerging role and the opportunities offered by Artificial Intelligence tools, representing the future direction of EFM, are also discussed with a specific focus on the use of Artificial Neural Networks, whose application to the analysis of accelerations in FHR signals is also examined in a case study conducted by the authors

    Antepartum fetal heart rate feature extraction and classification using empirical mode decomposition and support vector machine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardiotocography (CTG) is the most widely used tool for fetal surveillance. The visual analysis of fetal heart rate (FHR) traces largely depends on the expertise and experience of the clinician involved. Several approaches have been proposed for the effective interpretation of FHR. In this paper, a new approach for FHR feature extraction based on empirical mode decomposition (EMD) is proposed, which was used along with support vector machine (SVM) for the classification of FHR recordings as 'normal' or 'at risk'.</p> <p>Methods</p> <p>The FHR were recorded from 15 subjects at a sampling rate of 4 Hz and a dataset consisting of 90 randomly selected records of 20 minutes duration was formed from these. All records were labelled as 'normal' or 'at risk' by two experienced obstetricians. A training set was formed by 60 records, the remaining 30 left as the testing set. The standard deviations of the EMD components are input as features to a support vector machine (SVM) to classify FHR samples.</p> <p>Results</p> <p>For the training set, a five-fold cross validation test resulted in an accuracy of 86% whereas the overall geometric mean of sensitivity and specificity was 94.8%. The Kappa value for the training set was .923. Application of the proposed method to the testing set (30 records) resulted in a geometric mean of 81.5%. The Kappa value for the testing set was .684.</p> <p>Conclusions</p> <p>Based on the overall performance of the system it can be stated that the proposed methodology is a promising new approach for the feature extraction and classification of FHR signals.</p

    Machine learning and disease prediction in obstetrics

    Get PDF
    Machine learning technologies and translation of artificial intelligence tools to enhance the patient experience are changing obstetric and maternity care. An increasing number of predictive tools have been developed with data sourced from electronic health records, diagnostic imaging and digital devices. In this review, we explore the latest tools of machine learning, the algorithms to establish prediction models and the challenges to assess fetal well-being, predict and diagnose obstetric diseases such as gestational diabetes, pre-eclampsia, preterm birth and fetal growth restriction. We discuss the rapid growth of machine learning approaches and intelligent tools for automated diagnostic imaging of fetal anomalies and to asses fetoplacental and cervix function using ultrasound and magnetic resonance imaging. In prenatal diagnosis, we discuss intelligent tools for magnetic resonance imaging sequencing of the fetus, placenta and cervix to reduce the risk of preterm birth. Finally, the use of machine learning to improve safety standards in intrapartum care and early detection of complications will be discussed. The demand for technologies to enhance diagnosis and treatment in obstetrics and maternity should improve frameworks for patient safety and enhance clinical practice

    Artificial Intelligence for Noninvasive Fetal Electrocardiogram Analysis

    Get PDF

    Analysis of Dimensionality Reduction Techniques on Big Data

    Get PDF
    Due to digitization, a huge volume of data is being generated across several sectors such as healthcare, production, sales, IoT devices, Web, organizations. Machine learning algorithms are used to uncover patterns among the attributes of this data. Hence, they can be used to make predictions that can be used by medical practitioners and people at managerial level to make executive decisions. Not all the attributes in the datasets generated are important for training the machine learning algorithms. Some attributes might be irrelevant and some might not affect the outcome of the prediction. Ignoring or removing these irrelevant or less important attributes reduces the burden on machine learning algorithms. In this work two of the prominent dimensionality reduction techniques, Linear Discriminant Analysis (LDA) and Principal Component Analysis (PCA) are investigated on four popular Machine Learning (ML) algorithms, Decision Tree Induction, Support Vector Machine (SVM), Naive Bayes Classifier and Random Forest Classifier using publicly available Cardiotocography (CTG) dataset from University of California and Irvine Machine Learning Repository. The experimentation results prove that PCA outperforms LDA in all the measures. Also, the performance of the classifiers, Decision Tree, Random Forest examined is not affected much by using PCA and LDA.To further analyze the performance of PCA and LDA the eperimentation is carried out on Diabetic Retinopathy (DR) and Intrusion Detection System (IDS) datasets. Experimentation results prove that ML algorithms with PCA produce better results when dimensionality of the datasets is high. When dimensionality of datasets is low it is observed that the ML algorithms without dimensionality reduction yields better results

    Classification of Cardiotocography Data with WEKA

    Get PDF
    Cardiotocography (CTG) records fetal heart rate (FHR) and uterine contractions (UC) simultaneously. Cardiotocography trace patterns help doctors to understand the state of the fetus. Even after the introduction of cardiotocograph, the capacity to predict is still inaccurate. This paper evaluates some commonly used classification methods using WEKA. Precision,Recall, F-Measrue and ROC curve have been used as the metric to evaluate the performance of classifiers. As opposed to some of the earlier research works that were unable to identify Suspicious and Pathologic patterns, the results obtained from the study in this paper could precisely identify pathologic and Suspicious cases. Best results were obtained from J48, Random Forest and Classification via Regression

    Machine learning algorithms combining slope deceleration and fetal heart rate features to predict acidemia

    Get PDF
    Electronic fetal monitoring (EFM) is widely used in intrapartum care as the standard method for monitoring fetal well-being. Our objective was to employ machine learning algorithms to predict acidemia by analyzing specific features extracted from the fetal heart signal within a 30 min window, with a focus on the last deceleration occurring closest to delivery. To achieve this, we conducted a case–control study involving 502 infants born at Miguel Servet University Hospital in Spain, maintaining a 1:1 ratio between cases and controls. Neonatal acidemia was defined as a pH level below 7.10 in the umbilical arterial blood. We constructed logistic regression, classification trees, random forest, and neural network models by combining EFM features to predict acidemia. Model validation included assessments of discrimination, calibration, and clinical utility. Our findings revealed that the random forest model achieved the highest area under the receiver characteristic curve (AUC) of 0.971, but logistic regression had the best specificity, 0.879, for a sensitivity of 0.95. In terms of clinical utility, implementing a cutoff point of 31% in the logistic regression model would prevent unnecessary cesarean sections in 51% of cases while missing only 5% of acidotic cases. By combining the extracted variables from EFM recordings, we provide a practical tool to assist in avoiding unnecessary cesarean sections
    • …
    corecore