78 research outputs found

    Hypergraph matchings and designs

    Full text link
    We survey some aspects of the perfect matching problem in hypergraphs, with particular emphasis on structural characterisation of the existence problem in dense hypergraphs and the existence of designs.Comment: 19 pages, for the 2018 IC

    Combinatorics

    Get PDF
    Combinatorics is a fundamental mathematical discipline that focuses on the study of discrete objects and their properties. The present workshop featured research in such diverse areas as Extremal, Probabilistic and Algebraic Combinatorics, Graph Theory, Discrete Geometry, Combinatorial Optimization, Theory of Computation and Statistical Mechanics. It provided current accounts of exciting developments and challenges in these fields and a stimulating venue for a variety of fruitful interactions. This is a report on the meeting, containing extended abstracts of the presentations and a summary of the problem session

    Algorithmic Graph Theory

    Get PDF
    The main focus of this workshop was on mathematical techniques needed for the development of efficient solutions and algorithms for computationally difficult graph problems. The techniques studied at the workshhop included: the probabilistic method and randomized algorithms, approximation and optimization, structured families of graphs and approximation algorithms for large problems. The workshop Algorithmic Graph Theory was attended by 46 participants, many of them being young researchers. In 15 survey talks an overview of recent developments in Algorithmic Graph Theory was given. These talks were supplemented by 10 shorter talks and by two special sessions

    GOTCHA Password Hackers!

    Full text link
    We introduce GOTCHAs (Generating panOptic Turing Tests to Tell Computers and Humans Apart) as a way of preventing automated offline dictionary attacks against user selected passwords. A GOTCHA is a randomized puzzle generation protocol, which involves interaction between a computer and a human. Informally, a GOTCHA should satisfy two key properties: (1) The puzzles are easy for the human to solve. (2) The puzzles are hard for a computer to solve even if it has the random bits used by the computer to generate the final puzzle --- unlike a CAPTCHA. Our main theorem demonstrates that GOTCHAs can be used to mitigate the threat of offline dictionary attacks against passwords by ensuring that a password cracker must receive constant feedback from a human being while mounting an attack. Finally, we provide a candidate construction of GOTCHAs based on Inkblot images. Our construction relies on the usability assumption that users can recognize the phrases that they originally used to describe each Inkblot image --- a much weaker usability assumption than previous password systems based on Inkblots which required users to recall their phrase exactly. We conduct a user study to evaluate the usability of our GOTCHA construction. We also generate a GOTCHA challenge where we encourage artificial intelligence and security researchers to try to crack several passwords protected with our scheme.Comment: 2013 ACM Workshop on Artificial Intelligence and Security (AISec
    corecore