739 research outputs found

    Fast network configuration in Software Defined Networking

    Get PDF
    Software Defined Networking (SDN) provides a framework to dynamically adjust and re-program the data plane with the use of flow rules. The realization of highly adaptive SDNs with the ability to respond to changing demands or recover after a network failure in a short period of time, hinges on efficient updates of flow rules. We model the time to deploy a set of flow rules by the update time at the bottleneck switch, and formulate the problem of selecting paths to minimize the deployment time under feasibility constraints as a mixed integer linear program (MILP). To reduce the computation time of determining flow rules, we propose efficient heuristics designed to approximate the minimum-deployment-time solution by relaxing the MILP or selecting the paths sequentially. Through extensive simulations we show that our algorithms outperform current, shortest path based solutions by reducing the total network configuration time up to 55% while having similar packet loss, in the considered scenarios. We also demonstrate that in a networked environment with a certain fraction of failed links, our algorithms are able to reduce the average time to reestablish disrupted flows by 40%

    Bounding the Running Time of Algorithms for Scheduling and Packing Problems

    Get PDF
    We investigate the implications of the exponential time hypothesis on algorithms for scheduling and packing problems. Our main focus is to show tight lower bounds on the running time of these algorithms. For exact algorithms we investigate the dependence of the running time on the number n of items (for packing) or jobs (for scheduling). We show that many of these problems, including SUBSET SUM, KNAPSACK, BIN PACKING, P2||Cmax, and P2||∑wjCj, have a lower bound of 2o(n)×∥I∥O(n). We also develop an algorithmic framework that is able to solve a large number of scheduling and packing problems in time 2O(n)×∥I∥O(n). Finally, we show that there is no PTAS for MULTIPLE KNAPSACK and 2D-KNAPSACK with running time 2o(1ε)×∥I∥O(n) and no(1ε)×∥I∥O(n)

    A study on set variable representations in constraint programming

    Get PDF
    Il lavoro presentato in questa tesi si colloca nel contesto della programmazione con vincoli, un paradigma per modellare e risolvere problemi di ricerca combinatoria che richiedono di trovare soluzioni in presenza di vincoli. Una vasta parte di questi problemi trova naturale formulazione attraverso il linguaggio delle variabili insiemistiche. Dal momento che il dominio di tali variabili può essere esponenziale nel numero di elementi, una rappresentazione esplicita è spesso non praticabile. Recenti studi si sono quindi focalizzati nel trovare modi efficienti per rappresentare tali variabili. Pertanto si è soliti rappresentare questi domini mediante l'uso di approssimazioni definite tramite intervalli (d'ora in poi rappresentazioni), specificati da un limite inferiore e un limite superiore secondo un'appropriata relazione d'ordine. La recente evoluzione della ricerca sulla programmazione con vincoli sugli insiemi ha chiaramente indicato che la combinazione di diverse rappresentazioni permette di raggiungere prestazioni di ordini di grandezza superiori rispetto alle tradizionali tecniche di codifica. Numerose proposte sono state fatte volgendosi in questa direzione. Questi lavori si differenziano su come è mantenuta la coerenza tra le diverse rappresentazioni e su come i vincoli vengono propagati al fine di ridurre lo spazio di ricerca. Sfortunatamente non esiste alcun strumento formale per paragonare queste combinazioni. Il principale obiettivo di questo lavoro è quello di fornire tale strumento, nel quale definiamo precisamente la nozione di combinazione di rappresentazioni facendo emergere gli aspetti comuni che hanno caratterizzato i lavori precedenti. In particolare identifichiamo due tipi possibili di combinazioni, una forte ed una debole, definendo le nozioni di coerenza agli estremi sui vincoli e sincronizzazione tra rappresentazioni. Il nostro studio propone alcune interessanti intuizioni sulle combinazioni esistenti, evidenziandone i limiti e svelando alcune sorprese. Inoltre forniamo un'analisi di complessità della sincronizzazione tra minlex, una rappresentazione in grado di propagare in maniera ottimale vincoli lessicografici, e le principali rappresentazioni esistenti

    Solving a Class of Cut-Generating Linear Programs via Machine Learning

    Full text link
    Cut-generating linear programs (CGLPs) play a key role as a separation oracle to produce valid inequalities for the feasible region of mixed-integer programs. When incorporated inside branch-and-bound, the cutting planes obtained from CGLPs help to tighten relaxations and improve dual bounds. However, running the CGLPs at the nodes of the branch-and-bound tree is computationally cumbersome due to the large number of node candidates and the lack of a priori knowledge on which nodes admit useful cutting planes. As a result, CGLPs are often avoided at default settings of branch-and-cut algorithms despite their potential impact on improving dual bounds. In this paper, we propose a novel framework based on machine learning to approximate the optimal value of a CGLP class that determines whether a cutting plane can be generated at a node of the branch-and-bound tree. Translating the CGLP as an indicator function of the objective function vector, we show that it can be approximated through conventional data classification techniques. We provide a systematic procedure to efficiently generate training data sets for the corresponding classification problem based on the CGLP structure. We conduct computational experiments on benchmark instances using classification methods such as logistic regression. These results suggest that the approximate CGLP obtained from classification can improve the solution time compared to that of conventional cutting plane methods. Our proposed framework can be efficiently applied to a large number of nodes in the branch-and-bound tree to identify the best candidates for adding a cut

    Extensible Automated Constraint Modelling

    Get PDF
    In constraint solving, a critical bottleneck is the formulationof an effective constraint model of a given problem. The CONJURE system described in this paper, a substantial step forward over prototype versions of CONJURE previously reported, makes a valuable contribution to the automation of constraint modelling by automatically producing constraint models from their specifications in the abstract constraint specification language ESSENCE. A set of rules is used to refine an abstract specification into a concrete constraint model. We demonstrate that this set of rules is readily extensible to increase the space of possible constraint models CONJURE can produce. Our empirical results confirm that CONJURE can reproduce successfully the kernels of the constraint models of 32 benchmark problems found in the literature
    corecore