644 research outputs found

    Strange Bedfellows in the Personal Computer Industry: Technology Alliances between IBM and Apple

    Get PDF
    Until recently technological development in the personal computer industry could be characterized by the competition between two basic designs. The current dominant design in this industry is associated with the IBM and Microsoft personal computing architecture. The other version of personal computing originated in the Macintosh computer from Apple Computer Company. In recent years we also see an increasing number of alliances between IBM and Apple. Joint technological development appears to be a major and somewhat surprising objective of these alliances. This paper analyzes the technology alliances between these companies in the context of recent technological changes, focusing on the timing and the objectives of these alliances. Technology partnering between these proponents of competing basic designs are found to only materialize several years after the DOS-based design of IBM and Microsoft had become dominant. This study is of a qualitative and exploratory nature, using both a small data set and two case studies.management and organization theory ;

    Partitioned System with XtratuM on PowerPC

    Full text link
    XtratuM is a real-time hypervisor originally built on x86 architecture. It is designed referencing the concept of partitioned system. The main work in this thesis is to implement XtratuM in PowerPC architecture.Zhou, R. (2009). Partitioned System with XtratuM on PowerPC. http://hdl.handle.net/10251/12738Archivo delegad

    The role of strategic alliances in international businesses

    Get PDF
    Market globalization and impressive market growth force a lot of companies to declare themselves in the position of not having the critical strategic dimension, necessary for a successful competition gigantic markets. As a consequence, companies may be forced to resort more and more, to newer cooperation types, which were inconceivable in traditional economic development and when national markets prevailed. Signing alliances among companies may change the force field on national and international markets and may profoundly reconfigure the respective markets.international business, globalization, alliances, coordination costs

    Development of a machine protection system for the Superconducting Beam Test Facility at Fermilab

    Full text link
    Fermilab's Superconducting RF Beam Test Facility currently under construction will produce electron beams capable of damaging the acceleration structures and the beam line vacuum chambers in the event of an aberrant accelerator pulse. The accelerator is being designed with the capability to operate with up to 3000 bunches per macro-pulse, 5Hz repetition rate and 1.5 GeV beam energy. It will be able to sustain an average beam power of 72 KW at the bunch charge of 3.2 nC. Operation at full intensity will deposit enough energy in niobium material to approach the melting point of 2500 {\deg}C. In the early phase with only 3 cryomodules installed the facility will be capable of generating electron beam energies of 810 MeV and an average beam power that approaches 40 KW. In either case a robust Machine Protection System (MPS) is required to mitigate effects due to such large damage potentials. This paper will describe the MPS system being developed, the system requirements and the controls issues under consideration.Comment: 3 pp. 13th International Conference on Accelerator and Large Experimental Physics Control Systems (ICALEPCS 2011). 10-14 Oct 2011. Grenoble, Franc

    Array languages and the N-body problem

    Get PDF
    This paper is a description of the contributions to the SICSA multicore challenge on many body planetary simulation made by a compiler group at the University of Glasgow. Our group is part of the Computer Vision and Graphics research group and we have for some years been developing array compilers because we think these are a good tool both for expressing graphics algorithms and for exploiting the parallelism that computer vision applications require. We shall describe experiments using two languages on two different platforms and we shall compare the performance of these with reference C implementations running on the same platforms. Finally we shall draw conclusions both about the viability of the array language approach as compared to other approaches used in the challenge and also about the strengths and weaknesses of the two, very different, processor architectures we used

    Information Society Trends Issue 9, 1994

    Get PDF

    Mustang Daily, December 3, 1996

    Get PDF
    Student newspaper of California Polytechnic State University, San Luis Obispo, CA.https://digitalcommons.calpoly.edu/studentnewspaper/6079/thumbnail.jp

    Large scale ab-initio simulations of dislocations

    Get PDF
    We present a novel methodology to compute relaxed dislocations core configurations, and their energies in crystalline metallic materials using large-scale ab-intio simulations. The approach is based on MacroDFT, a coarse-grained density functional theory method that accurately computes the electronic structure with sub-linear scaling resulting in a tremendous reduction in cost. Due to its implementation in real-space, MacroDFT has the ability to harness petascale resources to study materials and alloys through accurate ab-initio calculations. Thus, the proposed methodology can be used to investigate dislocation cores and other defects where long range elastic effects play an important role, such as in dislocation cores, grain boundaries and near precipitates in crystalline materials. We demonstrate the method by computing the relaxed dislocation cores in prismatic dislocation loops and dislocation segments in magnesium (Mg). We also study the interaction energy with a line of Aluminum (Al) solutes. Our simulations elucidate the essential coupling between the quantum mechanical aspects of the dislocation core and the long range elastic fields that they generate. In particular, our quantum mechanical simulations are able to describe the logarithmic divergence of the energy in the far field as is known from classical elastic theory. In order to reach such scaling, the number of atoms in the simulation cell has to be exceedingly large, and cannot be achieved with the state-of-the-art density functional theory implementations
    corecore