1,754,953 research outputs found

    The Power of Weak Interests in Financial Reforms:Explaining the Creation of a US Consumer Agency

    Get PDF
    Dodd-Frank, the US financial reform law passed in response to the 2008 financial crisis, established the Consumer Financial Protection Bureau (CFPB), a new federal regulator with the sole responsibility of protecting consumers from unfair, deceptive, or abusive practices. This decision marked the end of a highly politicized reform debate in the US Congress, involving lobbying from business associations and civil society groups, in which proponents of the new bureau would normally have been considered to be much weaker than its opponents. Paradoxically, an emerging civil society coalition successfully lobbied decisionmakers and countered industry attempts to prevent industry capture. What explains the fact that rather weak and peripheral actors prevailed over more resourceful and dominant actors? The goal of this study is to examine and challenge questions of regulatory capture by concentrated industry interests in the reform debates in response to the credit crisis which originated in the US in 2007. The analysis suggests that for weak actors to prevail in policy conflicts over established, resource-rich opponents, they must undertake broad coalitionbuilding among themselves and with influential elite allies outside and inside of Congress who share the same policy goals

    Trade Implies Law: The Power of the Weak

    Get PDF
    Without the rule of law, traders who incur trading costs can be held up by counter-parties who are stronger in anarchic bargaining. The favourable terms which the latter extract can overcrowd that side of the market, dissipating the benefits. We establish plausible necessary and sufficient conditions for a move from anarchy toward the rule of law to benefit all traders. The rule of law might be delayed, not only by the difficulties of setting up legal institutions, but by monopolistic traders that have meantime emerged to address the inefficiencies of anarchic trade. These monopolistic traders must also guarantee atomistic traders against holdup.

    The Power of the Weak

    Get PDF
    A landmark result in the study of logics for formal verification is Janin and Walukiewicz’s theorem, stating that the modal μ-calculus (μML) is equivalent modulo bisimilarity to standard monadic second-order logic (here abbreviated as SMSO) over the class of labelled transition systems (LTSs for short). Our work proves two results of the same kind, one for the alternation-free or noetherian fragment μNML of μML on the modal side and one for WMSO, weak monadic second-order logic, on the second-order side. In the setting of binary trees, with explicit functions accessing the left and right successor of a node, it was known that WMSO is equivalent to the appropriate version of alternation-free μ-calculus. Our analysis shows that the picture changes radically once we consider, as Janin and Walukiewicz did, the standard modal μ-calculus, interpreted over arbitrary LTSs. The first theorem that we prove is that, over LTSs, μNML is equivalent modulo bisimilarity to noetherian MSO (NMSO), a newly introduced variant of SMSO where second-order quantification ranges over “conversely well-founded” subsets only. Our second theorem starts from WMSO and proves it equivalent modulo bisimilarity to a fragment of μNML defined by a notion of continuity. Analogously to Janin and Walukiewicz’s result, our proofs are automata-theoretic in nature: As another contribution, we introduce classes of parity automata characterising the expressiveness of WMSO and NMSO (on tree models) and of μCML and μNML (for all transition systems)

    Effect of Hot Baryons on the Weak-Lensing Shear Power Spectrum

    Full text link
    We investigate the impact of the intracluster medium on the weak-lensing shear power spectrum (PS). Using a halo model we find that, compared to the dark matter only case, baryonic pressure leads to a suppression of the shear PS on the order of a few percent or more for l1000l \gtrsim 1000. Cooling/cooled baryons and the intergalactic medium can further alter the shear PS. Therefore, the interpretation of future precision weak lensing data at high multipoles must take into account the effects of baryons.Comment: 4 pages, 3 figure

    Optimal capture of non-Gaussianity in weak lensing surveys: power spectrum, bispectrum and halo counts

    Full text link
    We compare the efficiency of weak lensing-selected galaxy clusters counts and of the weak lensing bispectrum at capturing non-Gaussian features in the dark matter distribution. We use the halo model to compute the weak lensing power spectrum, the bispectrum and the expected number of detected clusters, and derive constraints on cosmological parameters for a large, low systematic weak lensing survey, by focusing on the Ωm\Omega_m-σ8\sigma_8 plane and on the dark energy equation of state. We separate the power spectrum into the resolved and the unresolved parts of the data, the resolved part being defined as detected clusters, and the unresolved part as the rest of the field. We consider four kinds of clusters counts, taking into account different amount of information : signal-to-noise ratio peak counts; counts as a function of clusters' mass; counts as a function of clusters' redshift; and counts as a function of clusters' mass and redshift. We show that when combined with the power spectrum, those four kinds of counts provide similar constraints, thus allowing one to perform the most direct counts, signal-to-noise peaks counts, and get percent level constraints on cosmological parameters. We show that the weak lensing bispectrum gives constraints comparable to those given by the power spectrum and captures non-Gaussian features as well as clusters counts, its combination with the power spectrum giving errors on cosmological parameters that are similar to, if not marginally smaller than, those obtained when combining the power spectrum with cluster counts. We finally note that in order to reach its potential, the weak lensing bispectrum must be computed using all triangle configurations, as equilateral triangles alone do not provide useful information.Comment: Matches ApJ-accepted versio

    Fitting formulae of the reduced-shear power spectrum for weak lensing

    Full text link
    Context. Weak gravitational lensing is a powerful probe of large-scale structure and cosmology. Most commonly, second-order correlations of observed galaxy ellipticities are expressed as a projection of the matter power spectrum, corresponding to the lowest-order approximation between the projected and 3d power spectrum. Aims. The dominant lensing-only contribution beyond the zero-order approximation is the reduced shear, which takes into account not only lensing-induced distortions but also isotropic magnification of galaxy images. This involves an integral over the matter bispectrum. We provide a fast and general way to calculate this correction term. Methods. Using a model for the matter bispectrum, we fit elementary functions to the reduced-shear contribution and its derivatives with respect to cosmological parameters. The dependence on cosmology is encompassed in a Taylor-expansion around a fiducial model. Results. Within a region in parameter space comprising the WMAP7 68% error ellipsoid, the total reduced-shear power spectrum (shear plus fitted reduced-shear correction) is accurate to 1% (2%) for l<10^4 (l<2x10^5). This corresponds to a factor of four reduction of the bias compared to the case where no correction is used. This precision is necessary to match the accuracy of current non-linear power spectrum predictions from numerical simulations.Comment: 7 pages, 3 figures. A&A in press. Revised version with minor change
    corecore