4,345 research outputs found

    Redundancy Scheduling with Locally Stable Compatibility Graphs

    Full text link
    Redundancy scheduling is a popular concept to improve performance in parallel-server systems. In the baseline scenario any job can be handled equally well by any server, and is replicated to a fixed number of servers selected uniformly at random. Quite often however, there may be heterogeneity in job characteristics or server capabilities, and jobs can only be replicated to specific servers because of affinity relations or compatibility constraints. In order to capture such situations, we consider a scenario where jobs of various types are replicated to different subsets of servers as prescribed by a general compatibility graph. We exploit a product-form stationary distribution and weak local stability conditions to establish a state space collapse in heavy traffic. In this limiting regime, the parallel-server system with graph-based redundancy scheduling operates as a multi-class single-server system, achieving full resource pooling and exhibiting strong insensitivity to the underlying compatibility constraints.Comment: 28 pages, 4 figure

    Asymptotically optimal load balancing in large-scale heterogeneous systems with multiple dispatchers

    Get PDF
    We consider the load balancing problem in large-scale heterogeneous systems with multiple dispatchers. We introduce a general framework called Local-Estimation-Driven (LED). Under this framework, each dispatcher keeps local (possibly outdated) estimates of the queue lengths for all the servers, and the dispatching decision is made purely based on these local estimates. The local estimates are updated via infrequent communications between dispatchers and servers. We derive sufficient conditions for LED policies to achieve throughput optimality and delay optimality in heavy-traffic, respectively. These conditions directly imply delay optimality for many previous local-memory based policies in heavy traffic. Moreover, the results enable us to design new delay optimal policies for heterogeneous systems with multiple dispatchers. Finally, the heavy-traffic delay optimality of the LED framework also sheds light on a recent open question on how to design optimal load balancing schemes using delayed information

    Toward sustainable data centers: a comprehensive energy management strategy

    Get PDF
    Data centers are major contributors to the emission of carbon dioxide to the atmosphere, and this contribution is expected to increase in the following years. This has encouraged the development of techniques to reduce the energy consumption and the environmental footprint of data centers. Whereas some of these techniques have succeeded to reduce the energy consumption of the hardware equipment of data centers (including IT, cooling, and power supply systems), we claim that sustainable data centers will be only possible if the problem is faced by means of a holistic approach that includes not only the aforementioned techniques but also intelligent and unifying solutions that enable a synergistic and energy-aware management of data centers. In this paper, we propose a comprehensive strategy to reduce the carbon footprint of data centers that uses the energy as a driver of their management procedures. In addition, we present a holistic management architecture for sustainable data centers that implements the aforementioned strategy, and we propose design guidelines to accomplish each step of the proposed strategy, referring to related achievements and enumerating the main challenges that must be still solved.Peer ReviewedPostprint (author's final draft

    Adaptive Dispatching of Tasks in the Cloud

    Full text link
    The increasingly wide application of Cloud Computing enables the consolidation of tens of thousands of applications in shared infrastructures. Thus, meeting the quality of service requirements of so many diverse applications in such shared resource environments has become a real challenge, especially since the characteristics and workload of applications differ widely and may change over time. This paper presents an experimental system that can exploit a variety of online quality of service aware adaptive task allocation schemes, and three such schemes are designed and compared. These are a measurement driven algorithm that uses reinforcement learning, secondly a "sensible" allocation algorithm that assigns jobs to sub-systems that are observed to provide a lower response time, and then an algorithm that splits the job arrival stream into sub-streams at rates computed from the hosts' processing capabilities. All of these schemes are compared via measurements among themselves and with a simple round-robin scheduler, on two experimental test-beds with homogeneous and heterogeneous hosts having different processing capacities.Comment: 10 pages, 9 figure
    • …
    corecore