611 research outputs found

    The Power of Localization for Efficiently Learning Linear Separators with Noise

    Full text link
    We introduce a new approach for designing computationally efficient learning algorithms that are tolerant to noise, and demonstrate its effectiveness by designing algorithms with improved noise tolerance guarantees for learning linear separators. We consider both the malicious noise model and the adversarial label noise model. For malicious noise, where the adversary can corrupt both the label and the features, we provide a polynomial-time algorithm for learning linear separators in ℜd\Re^d under isotropic log-concave distributions that can tolerate a nearly information-theoretically optimal noise rate of η=Ω(ϵ)\eta = \Omega(\epsilon). For the adversarial label noise model, where the distribution over the feature vectors is unchanged, and the overall probability of a noisy label is constrained to be at most η\eta, we also give a polynomial-time algorithm for learning linear separators in ℜd\Re^d under isotropic log-concave distributions that can handle a noise rate of η=Ω(ϵ)\eta = \Omega\left(\epsilon\right). We show that, in the active learning model, our algorithms achieve a label complexity whose dependence on the error parameter ϵ\epsilon is polylogarithmic. This provides the first polynomial-time active learning algorithm for learning linear separators in the presence of malicious noise or adversarial label noise.Comment: Contains improved label complexity analysis communicated to us by Steve Hannek

    Active Learning and Best-Response Dynamics

    Full text link
    We examine an important setting for engineered systems in which low-power distributed sensors are each making highly noisy measurements of some unknown target function. A center wants to accurately learn this function by querying a small number of sensors, which ordinarily would be impossible due to the high noise rate. The question we address is whether local communication among sensors, together with natural best-response dynamics in an appropriately-defined game, can denoise the system without destroying the true signal and allow the center to succeed from only a small number of active queries. By using techniques from game theory and empirical processes, we prove positive (and negative) results on the denoising power of several natural dynamics. We then show experimentally that when combined with recent agnostic active learning algorithms, this process can achieve low error from very few queries, performing substantially better than active or passive learning without these denoising dynamics as well as passive learning with denoising

    Efficient Learning of Linear Separators under Bounded Noise

    Full text link
    We study the learnability of linear separators in ℜd\Re^d in the presence of bounded (a.k.a Massart) noise. This is a realistic generalization of the random classification noise model, where the adversary can flip each example xx with probability η(x)≤η\eta(x) \leq \eta. We provide the first polynomial time algorithm that can learn linear separators to arbitrarily small excess error in this noise model under the uniform distribution over the unit ball in ℜd\Re^d, for some constant value of η\eta. While widely studied in the statistical learning theory community in the context of getting faster convergence rates, computationally efficient algorithms in this model had remained elusive. Our work provides the first evidence that one can indeed design algorithms achieving arbitrarily small excess error in polynomial time under this realistic noise model and thus opens up a new and exciting line of research. We additionally provide lower bounds showing that popular algorithms such as hinge loss minimization and averaging cannot lead to arbitrarily small excess error under Massart noise, even under the uniform distribution. Our work instead, makes use of a margin based technique developed in the context of active learning. As a result, our algorithm is also an active learning algorithm with label complexity that is only a logarithmic the desired excess error ϵ\epsilon

    Statistical Active Learning Algorithms for Noise Tolerance and Differential Privacy

    Full text link
    We describe a framework for designing efficient active learning algorithms that are tolerant to random classification noise and are differentially-private. The framework is based on active learning algorithms that are statistical in the sense that they rely on estimates of expectations of functions of filtered random examples. It builds on the powerful statistical query framework of Kearns (1993). We show that any efficient active statistical learning algorithm can be automatically converted to an efficient active learning algorithm which is tolerant to random classification noise as well as other forms of "uncorrelated" noise. The complexity of the resulting algorithms has information-theoretically optimal quadratic dependence on 1/(1−2η)1/(1-2\eta), where η\eta is the noise rate. We show that commonly studied concept classes including thresholds, rectangles, and linear separators can be efficiently actively learned in our framework. These results combined with our generic conversion lead to the first computationally-efficient algorithms for actively learning some of these concept classes in the presence of random classification noise that provide exponential improvement in the dependence on the error ϵ\epsilon over their passive counterparts. In addition, we show that our algorithms can be automatically converted to efficient active differentially-private algorithms. This leads to the first differentially-private active learning algorithms with exponential label savings over the passive case.Comment: Extended abstract appears in NIPS 201

    Near-Optimal Active Learning of Halfspaces via Query Synthesis in the Noisy Setting

    Full text link
    In this paper, we consider the problem of actively learning a linear classifier through query synthesis where the learner can construct artificial queries in order to estimate the true decision boundaries. This problem has recently gained a lot of interest in automated science and adversarial reverse engineering for which only heuristic algorithms are known. In such applications, queries can be constructed de novo to elicit information (e.g., automated science) or to evade detection with minimal cost (e.g., adversarial reverse engineering). We develop a general framework, called dimension coupling (DC), that 1) reduces a d-dimensional learning problem to d-1 low dimensional sub-problems, 2) solves each sub-problem efficiently, 3) appropriately aggregates the results and outputs a linear classifier, and 4) provides a theoretical guarantee for all possible schemes of aggregation. The proposed method is proved resilient to noise. We show that the DC framework avoids the curse of dimensionality: its computational complexity scales linearly with the dimension. Moreover, we show that the query complexity of DC is near optimal (within a constant factor of the optimum algorithm). To further support our theoretical analysis, we compare the performance of DC with the existing work. We observe that DC consistently outperforms the prior arts in terms of query complexity while often running orders of magnitude faster.Comment: Accepted by AAAI 201

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    Noise-adaptive Margin-based Active Learning and Lower Bounds under Tsybakov Noise Condition

    Full text link
    We present a simple noise-robust margin-based active learning algorithm to find homogeneous (passing the origin) linear separators and analyze its error convergence when labels are corrupted by noise. We show that when the imposed noise satisfies the Tsybakov low noise condition (Mammen, Tsybakov, and others 1999; Tsybakov 2004) the algorithm is able to adapt to unknown level of noise and achieves optimal statistical rate up to poly-logarithmic factors. We also derive lower bounds for margin based active learning algorithms under Tsybakov noise conditions (TNC) for the membership query synthesis scenario (Angluin 1988). Our result implies lower bounds for the stream based selective sampling scenario (Cohn 1990) under TNC for some fairly simple data distributions. Quite surprisingly, we show that the sample complexity cannot be improved even if the underlying data distribution is as simple as the uniform distribution on the unit ball. Our proof involves the construction of a well separated hypothesis set on the d-dimensional unit ball along with carefully designed label distributions for the Tsybakov noise condition. Our analysis might provide insights for other forms of lower bounds as well.Comment: 16 pages, 2 figures. An abridged version to appear in Thirtieth AAAI Conference on Artificial Intelligence (AAAI), which is held in Phoenix, AZ USA in 201

    Learning with a Drifting Target Concept

    Full text link
    We study the problem of learning in the presence of a drifting target concept. Specifically, we provide bounds on the error rate at a given time, given a learner with access to a history of independent samples labeled according to a target concept that can change on each round. One of our main contributions is a refinement of the best previous results for polynomial-time algorithms for the space of linear separators under a uniform distribution. We also provide general results for an algorithm capable of adapting to a variable rate of drift of the target concept. Some of the results also describe an active learning variant of this setting, and provide bounds on the number of queries for the labels of points in the sequence sufficient to obtain the stated bounds on the error rates
    • …
    corecore