22,170 research outputs found

    Playing with Conway’s problem

    Get PDF
    AbstractThe centralizer of a language is the maximal language commuting with it. The question, raised by Conway in [J.H. Conway, Regular Algebra and Finite Machines, Chapman Hall, 1971], whether the centralizer of a rational language is always rational, recently received a lot of attention. In Kunc [M. Kunc, The power of commuting with finite sets of words, in: Proc. of STACS 2005, in: LNCS, vol. 3404, Springer, 2005, pp. 569–580], a strong negative answer to this problem was given by showing that even complete co-recursively enumerable centralizers exist for finite languages. Using a combinatorial game approach, we give here an incremental construction of rational languages embedding any recursive computation in their centralizers

    Unextendible mutually unbiased bases (after Mandayam, Bandyopadhyay, Grassl and Wootters)

    Get PDF
    We consider questions posed in a recent paper of Mandayam et al. (2014) on the nature of unextendible mutually unbiased bases. We describe a conceptual framework to study these questions, using a connection proved by the author in Thas (2009) between the set of nonidentity generalized Pauli operators on the Hilbert space of N d-level quantum systems, d a prime, and the geometry of non-degenerate alternating bilinear forms of rank N over finite fields F d We then supply alternative and short proofs of results obtained in Mandayam et al. (2014), as well as new general bounds for the problems considered in loc. cit. In this setting, we also solve Conjecture 1 of Mandayam et al. (2014) and speculate on variations of this conjecture

    Abelian subgroups of Garside groups

    Full text link
    In this paper, we show that for every abelian subgroup HH of a Garside group, some conjugate g−1Hgg^{-1}Hg consists of ultra summit elements and the centralizer of HH is a finite index subgroup of the normalizer of HH. Combining with the results on translation numbers in Garside groups, we obtain an easy proof of the algebraic flat torus theorem for Garside groups and solve several algorithmic problems concerning abelian subgroups of Garside groups.Comment: This article replaces our earlier preprint "Stable super summit sets in Garside groups", arXiv:math.GT/060258

    Discrete phase-space structure of nn-qubit mutually unbiased bases

    Full text link
    We work out the phase-space structure for a system of nn qubits. We replace the field of real numbers that label the axes of the continuous phase space by the finite field \Gal{2^n} and investigate the geometrical structures compatible with the notion of unbiasedness. These consist of bundles of discrete curves intersecting only at the origin and satisfying certain additional properties. We provide a simple classification of such curves and study in detail the four- and eight-dimensional cases, analyzing also the effect of local transformations. In this way, we provide a comprehensive phase-space approach to the construction of mutually unbiased bases for nn qubits.Comment: Title changed. Improved version. Accepted for publication in Annals of Physic

    Revisiting the Equivalence Problem for Finite Multitape Automata

    Full text link
    The decidability of determining equivalence of deterministic multitape automata (or transducers) was a longstanding open problem until it was resolved by Harju and Karhum\"{a}ki in the early 1990s. Their proof of decidability yields a co_NP upper bound, but apparently not much more is known about the complexity of the problem. In this paper we give an alternative proof of decidability, which follows the basic strategy of Harju and Karhumaki but replaces their use of group theory with results on matrix algebras. From our proof we obtain a simple randomised algorithm for deciding language equivalence of deterministic multitape automata and, more generally, multiplicity equivalence of nondeterministic multitape automata. The algorithm involves only matrix exponentiation and runs in polynomial time for each fixed number of tapes. If the two input automata are inequivalent then the algorithm outputs a word on which they differ
    • 

    corecore