97 research outputs found

    A BTP-Based Family of Variable Elimination Rules for Binary CSPs

    Get PDF
    International audienceThe study of broken-triangles is becoming increasingly ambitious , by both solving constraint satisfaction problems (CSPs) in polynomial time and reducing search space size through value merging or variable elimination. Considerable progress has been made in extending this important concept, such as dual broken-triangle and weakly broken-triangle, in order to maximize the number of captured tractable CSP instances and/or the number of merged values. Specifically, m-wBTP allows to merge more values than BTP. k-BTP, WBTP and m-BTP permit to capture more tractable instances than BTP. Here, we introduce a new weaker form of BTP, which will be called m-fBTP for flexible broken-triangle property. m-fBTP allows on the one hand to eliminate more variables than BTP while preserving satisfiability and on the other to define new bigger tractable class for which arc consistency is a decision procedure. Likewise, m-fBTP permits to merge more values than BTP but less than m-wBTP

    Tractability in Constraint Satisfaction Problems: A Survey

    Get PDF
    International audienceEven though the Constraint Satisfaction Problem (CSP) is NP-complete, many tractable classes of CSP instances have been identified. After discussing different forms and uses of tractability, we describe some landmark tractable classes and survey recent theoretical results. Although we concentrate on the classical CSP, we also cover its important extensions to infinite domains and optimisation, as well as #CSP and QCSP

    Towards 40 years of constraint reasoning

    Get PDF
    Research on constraints started in the early 1970s. We are approaching 40 years since the beginning of this successful field, and it is an opportunity to revise what has been reached. This paper is a personal view of the accomplishments in this field. We summarize the main achievements along three dimensions: constraint solving, modelling and programming. We devote special attention to constraint solving, covering popular topics such as search, inference (especially arc consistency), combination of search and inference, symmetry exploitation, global constraints and extensions to the classical model. For space reasons, several topics have been deliberately omitted.Partially supported by the Spanish project TIN2009-13591-C02-02 and Generalitat de Catalunya grant 2009-SGR-1434.Peer Reviewe

    Optimization and inference under fuzzy numerical constraints

    Get PDF
    Εκτεταμένη έρευνα έχει γίνει στους τομείς της Ικανοποίησης Περιορισμών με διακριτά (ακέραια) ή πραγματικά πεδία τιμών. Αυτή η έρευνα έχει οδηγήσει σε πολλαπλές σημασιολογικές περιγραφές, πλατφόρμες και συστήματα για την περιγραφή σχετικών προβλημάτων με επαρκείς βελτιστοποιήσεις. Παρά ταύτα, λόγω της ασαφούς φύσης πραγματικών προβλημάτων ή ελλιπούς μας γνώσης για αυτά, η σαφής μοντελοποίηση ενός προβλήματος ικανοποίησης περιορισμών δεν είναι πάντα ένα εύκολο ζήτημα ή ακόμα και η καλύτερη προσέγγιση. Επιπλέον, το πρόβλημα της μοντελοποίησης και επίλυσης ελλιπούς γνώσης είναι ακόμη δυσκολότερο. Επιπροσθέτως, πρακτικές απαιτήσεις μοντελοποίησης και μέθοδοι βελτιστοποίησης του χρόνου αναζήτησης απαιτούν συνήθως ειδικές πληροφορίες για το πεδίο εφαρμογής, καθιστώντας τη δημιουργία ενός γενικότερου πλαισίου βελτιστοποίησης ένα ιδιαίτερα δύσκολο πρόβλημα. Στα πλαίσια αυτής της εργασίας θα μελετήσουμε το πρόβλημα της μοντελοποίησης και αξιοποίησης σαφών, ελλιπών ή ασαφών περιορισμών, καθώς και πιθανές στρατηγικές βελτιστοποίησης. Καθώς τα παραδοσιακά προβλήματα ικανοποίησης περιορισμών λειτουργούν βάσει συγκεκριμένων και προκαθορισμένων κανόνων και σχέσεων, παρουσιάζει ενδιαφέρον η διερεύνηση στρατηγικών και βελτιστοποιήσεων που θα επιτρέπουν το συμπερασμό νέων ή/και αποδοτικότερων περιορισμών. Τέτοιοι επιπρόσθετοι κανόνες θα μπορούσαν να βελτιώσουν τη διαδικασία αναζήτησης μέσω της εφαρμογής αυστηρότερων περιορισμών και περιορισμού του χώρου αναζήτησης ή να προσφέρουν χρήσιμες πληροφορίες στον αναλυτή για τη φύση του προβλήματος που μοντελοποιεί.Extensive research has been done in the areas of Constraint Satisfaction with discrete/integer and real domain ranges. Multiple platforms and systems to deal with these kinds of domains have been developed and appropriately optimized. Nevertheless, due to the incomplete and possibly vague nature of real-life problems, modeling a crisp and adequately strict satisfaction problem may not always be easy or even appropriate. The problem of modeling incomplete knowledge or solving an incomplete/relaxed representation of a problem is a much harder issue to tackle. Additionally, practical modeling requirements and search optimizations require specific domain knowledge in order to be implemented, making the creation of a more generic optimization framework an even harder problem.In this thesis, we will study the problem of modeling and utilizing incomplete and fuzzy constraints, as well as possible optimization strategies. As constraint satisfaction problems usually contain hard-coded constraints based on specific problem and domain knowledge, we will investigate whether strategies and generic heuristics exist for inferring new constraint rules. Additional rules could optimize the search process by implementing stricter constraints and thus pruning the search space or even provide useful insight to the researcher concerning the nature of the investigated problem

    Efficient path consistency algorithm for large qualitative constraint networks

    Full text link
    We propose a new algorithm called DPC+ to enforce partial path consistency (PPC) on qualitative constraint networks. PPC restricts path consistency (PC) to a triangulation of the underlying constraint graph of a network. As PPC retains the sparseness of a constraint graph, it can make reasoning tasks such as consistency checking and minimal labelling of large qualitative constraint networks much easier to tackle than PC. For qualitative constraint networks defined over any distributive subalgebra of well-known spatio-temporal calculi, such as the Region Connection Calculus and the Interval Algebra, we show that DPC+ can achieve PPC very fast. Indeed, the algorithm enforces PPC on a qualitative constraint network by processing each triangle in a triangulation of its underlying constraint graph at most three times. Our experiments demonstrate significant improvements of DPC+ over the state-of-the-art PPC enforcing algorithm

    Metareasoning about propagators for constraint satisfaction

    Get PDF
    Given the breadth of constraint satisfaction problems (CSPs) and the wide variety of CSP solvers, it is often very difficult to determine a priori which solving method is best suited to a problem. This work explores the use of machine learning to predict which solving method will be most effective for a given problem. We use four different problem sets to determine the CSP attributes that can be used to determine which solving method should be applied. After choosing an appropriate set of attributes, we determine how well j48 decision trees can predict which solving method to apply. Furthermore, we take a cost sensitive approach such that problem instances where there is a great difference in runtime between algorithms are emphasized. We also attempt to use information gained on one class of problems to inform decisions about a second class of problems. Finally, we show that the additional costs of deciding which method to apply are outweighed by the time savings compared to applying the same solving method to all problem instances

    Graph Structures for Knowledge Representation and Reasoning

    Get PDF
    This open access book constitutes the thoroughly refereed post-conference proceedings of the 6th International Workshop on Graph Structures for Knowledge Representation and Reasoning, GKR 2020, held virtually in September 2020, associated with ECAI 2020, the 24th European Conference on Artificial Intelligence. The 7 revised full papers presented together with 2 invited contributions were reviewed and selected from 9 submissions. The contributions address various issues for knowledge representation and reasoning and the common graph-theoretic background, which allows to bridge the gap between the different communities
    corecore