127,963 research outputs found

    The 2012 Power Trading Agent Competition

    Get PDF
    This is the specification for the Power Trading Agent Competition for 2012 (Power TAC 2012). Power TAC is a competitive simulation that models a “liberalized” retail electrical energy market, where competing business entities or “brokers” offer energy services to customers through tariff contracts, and must then serve those customers by trading in a wholesale market. Brokers are challenged to maximize their profits by buying and selling energy in the wholesale and retail markets, subject to fixed costs and constraints. Costs include fees for publication and withdrawal of tariffs, and distribution fees for transporting energy to their contracted customers. Costs are also incurred whenever there is an imbalance between a broker’s total contracted energy supply and demand within a given time slot. The simulation environment models a wholesale market, a regulated distribution utility, and a population of energy customers, situated in a real location on Earth during a specific period for which weather data is available. The wholesale market is a relatively simple call market, similar to many existing wholesale electric power markets, such as Nord Pool in Scandinavia or FERC markets in North America, but unlike the FERC markets we are modeling a single region, and therefore we do not model location-marginal pricing. Customer models include households and a variety of commercial and industrial entities, many of which have production capacity (such as solar panels or wind turbines) as well as electric vehicles. All have “real-time” metering to support allocation of their hourly supply and demand to their subscribed brokers, and all are approximate utility maximizers with respect to tariff selection, although the factors making up their utility functions may include aversion to change and complexity that can retard uptake of marginally better tariff offers. The distribution utility models the regulated natural monopoly that owns the regional distribution network, and is responsible for maintenance of its infrastructure and for real-time balancing of supply and demand. The balancing process is a market-based mechanism that uses economic incentives to encourage brokers to achieve balance within their portfolios of tariff subscribers and wholesale market positions, in the face of stochastic customer behaviors and weather-dependent renewable energy sources. The broker with the highest bank balance at the end of the simulation wins

    The 2016 Power Trading Agent Competition

    Get PDF
    This is the specification for the Power Trading Agent Competition for 2016 (Power TAC 2016). Power TAC is a competitive simulation that models a “liberalized” retail electrical energy market, where competing business entities or “brokers” offer energy services to customers through tariff contracts, and must then serve those customers by trading in a wholesale market. Brokers are challenged to maximize their profits by buying and selling energy in the wholesale and retail markets, subject to fixed costs and constraints; the winner of an individual “game” is the broker with the highest bank balance at the end of a simulation run. Costs include fees for publication and withdrawal of tariffs, and distribution fees for transporting energy to their contracted customers. Costs are also incurred whenever there is an imbalance between a broker’s total contracted energy supply and demand within a given time slot. The simulation environment models a wholesale market, a regulated distribution utility, and a population of energy customers, situated in a real location on Earth during a specific period for which weather data is available. The wholesale market is a relatively simple call market, similar to many existing wholesale electric power markets, such as Nord Pool in Scandinavia or FERC markets in North America, but unlike the FERC markets we are modeling a single region, and therefore we approximate locational-marginal pricing through a simple manipulation of the wholesale supply curve. Customer models include households, electric vehicles, and a variety of commercial and industrial entities, many o

    The 2015 Power Trading Agent Competition

    Get PDF
    This is the specification for the Power Trading Agent Competition for 2015 (Power TAC 2015). Power TAC is a competitive simulation that models a “liberalized” retail electrical energy market, where competing business entities or “brokers” offer energy services to customers through tariff contracts, and must then serve those customers by trading in a wholesale market. Brokers are challenged to maximize their profits by buying and selling energy in the wholesale and retail markets, subject to fixed costs and constraints. Costs include fees for publication and withdrawal of tariffs, and distribution fees for transporting energy to their contracted customers. Costs are also incurred whenever there is an imbalance between a broker’s total contracted energy supply and demand within a given time slot. The simulation environment models a wholesale market, a regulated dis

    The 2013 Power Trading Agent Competition

    Get PDF
    This is the specification for the Power Trading Agent Competition for 2013 (Power TAC 2013). Power TAC is a competitive simulation that models a “liberalized” retail electrical energy market, where competing business entities or “brokers” offer energy services to customers through tariff contracts, and must then serve those customers by trading in a wholesale market. Brokers are challenged to maximize their profits by buying and selling energy in the wholesale and retail markets, subject to fixed costs and constraints. Costs include fees for publication and withdrawal of tariffs, and distribution fees for transporting energy to their contracted customers. Costs are also incurred whenever there is an imbalance between a broker’s total contracted energy supply and demand within a given time slot. The simulation environment models a wholesale market, a regulated distribution utility, and a population of energy customers, situated in a real location on Earth during a specific period for which weather data is available. The wholesale market is a relatively simple call market, similar to many existing wholesale electric power markets, such as Nord Pool in Scandinavia or FERC markets in North America, but unlike the FERC markets we are modeling a single region, and therefore we do not model location-marginal pricing. Customer models include households and a variety of commercial and industrial entities, many of which have production capacity (such as solar panels or wind turbines) as well as electric vehicles. All have “real-time” metering to support allocation of their hourly supply and demand to their subscribed brokers, and all are approximate utility maximizers with respect to tariff selection, although the factors making up their utility functions may include aversion to change and complexity that can retard uptake of marginally better tariff offers. The distribution utility models the regulated natural monopoly that owns the regional distribution network, and is responsible for maintenance of its infrastructure and for real-time balancing of supply and demand. The balancing process is a market-based mechanism that uses economic incentives to encourage brokers to achieve balance within their portfolios of tariff subscribers and wholesale market positions, in the face of stochastic customer behaviors and weather-dependent renewable energy sources. The broker with the highest bank balance at the end of the simulation wins

    The 2017 Power Trading Agent Competition

    Get PDF
    This is the specification for the Power Trading Agent Competition for 2017 (Power TAC 2017). Power TAC is a competitive simulation that models a “liberalized” retail electrical energy market, where competing business entities or “brokers” offer energy services to customers through tariff contracts, and must then serve those customers by trading in a wholesale market. Brokers are challenged to maximize their profits by buying and selling energy in the wholesale and retail markets, subject to fixed costs and constraints; the winner of an individual “game” is the broker with the highest bank balance at the end of a simulation run. Costs include fees for publication and withdrawal of tariffs, and distribution fees for transporting energy to their contracted customers. Costs are also incurred whenever there is an imbalance between a broker’s total contracted energy supply and demand within a given time slot. The simulation environment models a wholesale market, a regulated distribution utility, and a population of energy customers, situated in a real location on Earth during a specific period for which weather data is available. The wholesale market is a relatively simple call market, similar to many existing wholesale electric power markets, such as Nord Pool in Scandinavia or FERC markets in North America, but unlike the FERC markets we are modeling a single region, and therefore we approximate locational-marginal pricing through a simple manipulation of the wholesale supply curve. Customer models include households, electric vehicles, and a variety of commercial and industrial entities, many of which have production capacity such as solar panels or wind turbines. All have “real-time” metering to support allocation of their hourly supply and demand to their subscribed brokers, and all are approximate ut

    The 2020 Power Trading Agent Competition

    Get PDF
    This is the specification for the Power Trading Agent Competition for 2020 (Power TAC 2020). Power TAC is a competitive simulation that models a “liberalized” retail electrical energy market, where competing business entities or “brokers” offer energy services to customers through tariff contracts, and must then serve those customers by trading in a wholesale market. Brokers are challenged to maximize their profits by buying and selling energy in the wholesale and retail markets, subject to fixed costs and constraints; the winner of an individual “game” is the broker with the highest bank balance at the end of a simulation run. Costs include fees for publication and withdrawal of tariffs, for rectifying supply-demand imbalances, for contributions to peak demand, and for customer connections. The simulation environment models a wholesale market, a regulated distribution utility, and a population of energy customers, situated in a real location on Earth during a specific period for which weather data is available. The wholesale market is a relatively simple call market, similar to many existing wholesale electric power markets, such as Nord Pool in Scandinavia or FERC markets in North America, but unlike the FERC markets we are modeling a single region, and therefore we approximate the effects of locational-marginal pricing through manipulation of the wholesale supply curve. Customer models include households, electric vehicles, and a variety of commercial and industrial entities, many of whom have production capacity suc

    Analyzing and improving the energy balancing market in the power trading agent competition

    Get PDF
    Widespread adoption of sustainable energy sources is driving electricity grid operators to supplement hierarchical control regimes with market-based control that better motivates stakeholder involvement. However, to prevent market failures, such controls require testing before real-world implementation. The Power Trading Agent Competition is a competitive simulation of distribution grids that mirrors real-world scenarios and tests alternative policy and business scenarios. In Power TAC, broker agents acquire energy through bidding in a forward wholesale market to satisfy their customers overall demand on an hourly basis. In addition, a balancing market is intended to resolve real-time energy imbalances caused by broker prediction errors using demand response resources. As part of the annual alignment process, we discovered that brokers in the 2015 competition were persistently buying insufficient energy on the wholesale market to satisfy their customer demand. Instead, the balancing market made up the deficit, charging brokers a premium over the wholesale price. Also, demand response resources were heavily underused. We studied the economic impact of this systematic imbalance on brokers and discovered that they were behaving rationally, given the prices they faced in the two markets. We present the process and results of this analysis, and show how the balancing markets pricing mechanism can be adjusted for the 2016 competition to make it rational for brokers to achieve an overall neutral imbalance

    An intelligent broker agent for energy trading:an MDP approach

    Get PDF
    This paper details the development and evaluation of AstonTAC, an energy broker that successfully participated in the 2012 Power Trading Agent Competition (Power TAC). AstonTAC buys electrical energy from the wholesale market and sells it in the retail market. The main focus of the paper is on the broker’s bidding strategy in the wholesale market. In particular, it employs Markov Decision Processes (MDP) to purchase energy at low prices in a day-ahead power wholesale market, and keeps energy supply and demand balanced. Moreover, we explain how the agent uses Non-Homogeneous Hidden Markov Model (NHHMM) to forecast energy demand and price. An evaluation and analysis of the 2012 Power TAC finals show that AstonTAC is the only agent that can buy energy at low price in the wholesale market and keep energy imbalance low

    TugaTAC Broker: A Fuzzy Logic Adaptive Reasoning Agent for Energy Trading

    Get PDF
    Smart Grid technologies are changing the way energy is generated, distributed and consumed. With the increasing spread of renewable power sources, new market strategies are needed to guarantee a more sustainable participation and less dependency of bulk generation. In PowerTAC (Power Trading Agent Competition), different software agents compete in a simulated energy market, impersonating broker companies to create and manage attractive tariffs for customers while aiming to profit. In this paper, we present TugaTAC Broker, a PowerTAC agent that uses a fuzzy logic mechanism to compose tariffs based on its customers portfolio. Fuzzy sets allow adaptive configurations for brokers in different scenarios. To validate and compare the performance of TugaTAC, we have run a local version of the PowerTAC competition. The experiments comprise TugaTAC competing against other simple agents and a more realistic configuration, with instances of the winners of previous editions of the competition. Preliminary results show a promising dynamic: our approach was able to manage imbalances and win the competition in the simple case, but need refinements to compete with more sophisticated market. (c) Springer International Publishing Switzerland 2016

    Analyzing and improving the energy balancing market in the Power Trading Agent Competition

    Get PDF
    • …
    corecore