3,970 research outputs found

    Arctic Ocean and Hudson Bay freshwater exports: New estimates from 7 decades of hydrographic surveys on the Labrador Shelf

    Get PDF
    While reasonable knowledge of multi-decadal Arctic freshwater storage variability exists, we have little knowledge of Arctic freshwater exports on similar timescales. A hydrographic time series from the Labrador Shelf, spanning seven decades at annual resolution, is here used to quantify Arctic Ocean freshwater export variability west of Greenland. Output from a high-resolution coupled ice-ocean model is used to establish the representativeness of those hydrographic sections. Clear annual to decadal variability emerges, with high freshwater transports during the 1950s and 1970s–80s, and low transports in the 1960s, and from the mid-1990s to 2016, with typical amplitudes of 30 mSv (1 Sv = 106 m3 s-1). The variability in both the transports and cumulative volumes correlates well both with Arctic and North Atlantic freshwater storage changes on the same timescale. We refer to the "inshore branch" of the Labrador Current as the Labrador Coastal Current, because it is a dynamically- and geographically-distinct feature. It originates as the Hudson Bay outflow, and preserves variability from river runoff into the Hudson Bay catchment. We find a need for parallel, long-term freshwater transport measurements from Fram and Davis Straits, to better understand Arctic freshwater export control mechanisms and partitioning of variability between routes west and east of Greenland, and a need for better knowledge and understanding of year-round (solid and liquid) freshwater fluxes on the Labrador shelf. Our results have implications for wider, coherent atmospheric control on freshwater fluxes and content across the Arctic and northern North Atlantic Oceans

    Florida Bay Science Program: a synthesis of research on Florida Bay

    Get PDF
    This report documents the progress made toward the objectives established in the Strategic Plan revised in 1997 for the agencies cooperating in the program. These objectives are expressed as five questions that organized the research on the Florida Bay ecosystem: Ecosystem History What was the Florida Bay ecosystem like 50, 100, and 150 years ago? Question 1—Physical Processes How and at what rates do storms, changing freshwater flows, sea level rise, and local evaporation and precipitation influence circulation and salinity patterns within Florida Bay and exchange between the bay and adjacent waters? Question 2—Nutrient Dynamics What is the relative importance of the influx of external nutrients and of internal nutrient cycling in determining the nutrient budget for Florida Bay? What mechanisms control the sources and sinks of the bay’s nutrients? Question 3—Plankton Blooms What regulates the onset, persistence, and fate of planktonic algal blooms in Florida Bay? Question 4—Seagrass Ecology What are the causes and mechanisms for the observed changes in the seagrass community of Florida Bay? What is the effect of changing salinity, light, and nutrient regimes on these communities? Question 5—Higher Trophic Levels What is the relationship between environmental and habitat change and the recruitment, growth, and survivorship of animals in Florida Bay? Each question examines different characteristics of the Florida Bay ecosystem and the relation of these to the geomorphological setting of the bay and to processes linking the bay with adjacent systems and driving change.This report also examines the additional question of what changes have occurred in Florida Bay over the past 150 years

    Mercury in Florida Bay fish: spatial distribution of elevated concentrations and possible linkages to Everglades restoration

    Get PDF
    Health advisories are now posted in northern Florida Bay, adjacent to the Everglades, warning of high mercury concentrations in some species of gamefish. Highest concentrations of mercury in both forage fish and gamefish have been measured in the northeastern corner of Florida Bay, adjacent to the dominant freshwater inflows from the Everglades. Thirty percent of spotted seatrout (Cynoscion nebulosus Cuvier, 1830) analyzed exceeded Florida’s no consumption level of 1.5 μg g−1 mercury in this area. We hypothesized that freshwater draining the Everglades served as the major source of methylmercury entering the food web supporting gamefish. A lack of correlation between mercury concentrations and salinity did not support this hypothesis, although enhanced bioavailability of methylmercury is possible as freshwater is diluted with estuarine water. Stable isotopes of carbon, nitrogen, and sulfur were measured in fish to elucidate the shared pathways of methylmercury and nutrient elements through the food web. These data support a benthic source of both methylmercury and nutrient elements to gamefish within the eastern bay, as opposed to a dominant watershed source. Ecological characteristics of the eastern bay, including active redox cycling in near-surface sediments without excessive sulfide production are hypothesized to promote methylmercury formation and bioaccumulation in the benthos. Methylmercury may then accumulate in gamefish through a food web supported by benthic microalgae, detritus, pink shrimp (Farfantepenaeus duorarum Burkenroad, 1939), and other epibenthic feeders. Uncertainty remains as to the relative importance of watershed imports of methylmercury from the Everglades and in situ production in the bay, an uncertainty that needs resolution if the effects of Everglades restoration on mercury levels in fish are to be modeled and managed

    Assessment of contemporary Arctic river runoff based on observational discharge records

    Get PDF
    We describe the contemporary hydrography of the pan‐Arctic land area draining into the Arctic Ocean, northern Bering Sea, and Hudson Bay on the basis of observational records of river discharge and computed runoff. The Regional Arctic Hydrographic Network data set, R‐ArcticNET, is presented, which is based on 3754 recording stations drawn from Russian, Canadian, European, and U.S. archives. R‐ArcticNET represents the single largest data compendium of observed discharge in the Arctic. Approximately 73% of the nonglaciated area of the pan‐Arctic is monitored by at least one river discharge gage giving a mean gage density of 168 gages per 106 km2. Average annual runoff is 212 mm yr−1 with approximately 60% of the river discharge occurring from April to July. Gridded runoff surfaces are generated for the gaged portion of the pan‐Arctic region to investigate global change signals. Siberia and Alaska showed increases in winter runoff during the 1980s relative to the 1960s and 1970s during annual and seasonal periods. These changes are consistent with observations of change in the climatology of the region. Western Canada experienced decreased spring and summer runoff

    Observations and Predictions of Arctic Climatic Change: Potential Effects on Marine Mammals

    Get PDF
    Recent analyses have revealed trends over the past 20-30 years of decreasing sea ice extent in the Arctic Ocean coincident with warming trends. Such trends may be indicative of the polar amplifications of warming predicted for the next several decades in response to increasing atmospheric CO2. We have summarized these predictions and nonuniform patterns of arctic climate change in order to address their potential effects on marine mammals. Since recent trends in sea ice extent are nonuniform, the direct and indirect effects on marine mammals are expected to vary geographically. Changes in the extent and concentration of sea ice may alter the seasonal distributions, geographic ranges, patterns of migration, nutritional status, reproductive success, and ultimately the abundance and stock structure of some species. Ice-associated seals, which rely on suitable ice substrate for resting, pupping, and molting, may be especially vulnerable to such changes. As recent decreases in ice coverage have been more extensive in the Siberian Arctic (60 E-180 E) than in the Beaufort Sea and western sectors, we speculate that marine mammal populations in the Siberian Arctic may be among the first to experience climate-induced geographic shifts or altered reproductive capacity due to persistent changes in ice extent. Alteration in the extent and productivity of ice-edge systems may affect the density and distribution of important ice-associated prey of marine mammals, such as arctic cod, Boreogadus saida, and sympagic ("with ice") amphipods. Present climate models, however, are insufficient to predict regional ice dynamics, winds, mesoscale features, and mechanisms of nutrient resupply, which must be known to predict productivity and trophic response. Therefore, it is critical that mesoscale process-oriented studies identify the biophysical coupling required to maintain suitable prey availability and ice-associated habitat for marine mammals on regional arctic scales. Only an integrated ecosystems approach can address the complexity of factors determining reproductivity and cascading trophic dynamics in a warmer Arctic. This approach, integrated with monitoring of key indicator species (e.g., bowhead whale, ringed seal, and beluga), should be a high priority.Des analyses récentes ont fait apparaître des tendances, au cours des 20 à 30 dernières années, à la diminution de l'étendue des glaces de mer dans l'océan Arctique qui coïncident avec des tendances au réchauffement. Ces tendances pourraient être symptomatiques de l'amplification polaire du réchauffement prédit pour les prochaines décennies suite à la hausse de CO2 dans l'atmosphère. Cet article offre un résumé de ces prédictions et des schémas non uniformes de changement climatique dans l'Arctique, en vue d'examiner leurs retombées potentielles sur les mammifères marins. Vu que les tendances récentes de l'étendue des glaces de mer ne sont pas uniformes, les retombées directes et indirectes sur les mammifères marins devraient varier sur le plan géographique. Des changements dans l'étendue et la concentration de la glace de mer peuvent modifier les distributions saisonnières, les aires géographiques, les schémas de migration, l'état nutritionnel, le succès de la reproduction, et, en fin de compte, l'abondance et la structure de la population de certaines espèces. Les phoques associés à la glace, qui dépendent d'un support glaciel pour le repos, la mise bas et la mue, seraient particulièrement affectés par de tels changements. Vu que les diminutions récentes de couverture de glace ont été plus importantes dans l'Arctique sibérien (de 60° E. à 180° E.) que dans la mer de Beaufort et les secteurs occidentaux, on pense que les populations de mammifères marins dans l'Arctique sibérien pourraient être les premières à faire l'expérience de variations géographiques dues au climat ou d'une modification de leur capacité de reproduction causée par des changements chroniques dans l'étendue de glace. Une modification de l'étendue et de la productivité des systèmes de la marge glaciaire pourrait affecter la densité et la distribution de proies associées à la glace importantes pour les mammifères marins, comme la morue arctique Boreogadus saida et les amphipodes vivant en contact avec la glace. Les modèles climatologiques actuels ne sont toutefois pas en mesure de prédire les dynamiques régionales de la glace, les vents, les caractéristiques à mésoéchelle ainsi que les mécanismes de réapprovisionnement en éléments nutritifs, tous éléments que l'on doit connaître pour pouvoir prédire la productivité et la réponse trophique. Il est par conséquent critique que des études à mésoéchelle axées sur les processus identifient les interactions du milieu naturel nécessaires pour maintenir, à des échelles arctiques régionales, une disponibilité de proies et un habitat associé à la glace appropriés aux mammifères marins. Seule une approche intégrée des écosystèmes peut envisager la complexité des facteurs déterminant la productivité et les dynamiques trophiques qui en résultent dans un Arctique plus tempéré. Cette approche, intégrée avec la surveillance d'espèces indicateurs clés (p. ex., la baleine boréale, le phoque annelé et le bélouga), devrait constituer une haute priorité

    Sea ice melt and meteoric water distributions in Nares Strait, Baffin Bay, and the Canadian Arctic Archipelago

    Get PDF
    Sea ice melt (SIM), meteoric water (river runoff net precipitation), and Pacific seawater contributions to the upper waters of the Canadian Arctic Archipelago (CAA), Nares Strait, and Baffin Bay during late summer 1997 and 2003 are estimated from salinity, δ18O, and nutrient data. Salinity-δ18O relationships within the study area suggest that the CAA inherits a net sea-ice formation (brine) signal from the Arctic Ocean. Inherited brine complicates the estimation of local contributions from sea ice melt and glacial runoff, especially where a significant component of the surface water derives from Arctic outflow. Our data are characterized by two linear relationships between salinity and δ18O, reflecting: (1) the mixing of deeper Atlantic seawater with brine-enriched halocline water of shelf origin and (2) mixing of halocline water with shallower waters freshened by meteoric water and local SIM. Inventories of Pacific water, meteoric water, net SIM, and local SIM were computed over the upper 150 m of the water column. Positive local SIM fractions were ubiquitous during late summer, with the largest inventories (\u3e1 m) found on the eastern sides of Baffin Bay, Kennedy Channel, and Davis Strait. In the CAA and Baffin Bay, freshwater inventories were dominated by contributions from meteoric and Pacific water, with little input from local SIM. In Smith Sound, where comparable data were collected in 1997 and 2003, meteoric water inventories of 8–10 m were similar for both years, whereas the Pacific water inventory was substantially lower in 2003 (\u3c80 m) than in 1997 (\u3e100 m), implying that the export of meteoric water from the Arctic Ocean is decoupled from Pacific water outflow

    Stable Isotopes as Tracers for Freshwater Fluxes into the North Atlantic

    No full text
    The Arctic acts as both an indicator and a facilitator of global climate change. Many studies have identified the manifold changes in the Arctic hydrological system resulting from global warming. These changes have affected the freshwater balance of the northern North Atlantic and therefore pose a problem to deep water formation in this region, further impacting the global climate. This thesis uses the quasi-conservative properties of oxygen and hydrogen isotopes in watermasses to identify and quantify the freshwater sources to the ocean currents exiting the Arctic into the northern North Atlantic.Comparison of historical oxygen isotope data from the East Greenland Current system with data presented here indicates that its freshwater isotope signature has not been temporally constant. Specifically, in 2005, there was a shift to a value ? 10 h heavier than the long-term mean, indicating a large increase in sea ice meltwater admixture that coincides with a large, short-term peak in the Fram Strait sea ice export. Therefore, interannual variations in the sea ice export are transported to the watermasses downstream. Oxygen isotope data from the West Greenland Current confirm that the freshwater signal in the East Greenland Current system is transferred around the tip of Greenland. However, there is an apparent decrease in the freshwater concentration in the West Greenland Current relative to the east. This potentially corroborates the previously reported retroflection of part of the East Greenland Current into the North Atlantic subpolar gyre. The primary freshwater sources to the Labrador Current are identified as Arctic surface waters exported via the Canadian Archipelago, Hudson Strait and the West Greenland Current. There is also considerable sea ice formation and melt influence on the Labrador Shelf.The world surface ocean oxygen and hydrogen isotope mixing relationship is observed to be regionally and seasonally robust, with the exception of areas with a high meteoric water influence. The use of hydrogen isotopes as a tracer for Greenland glacial meltwater in the East Greenland Current system is investigated and the preliminary results are positive although further work is necessary to establish the value of this tracer.This thesis highlights the importance of stable isotope studies for identifying and quantifying the freshwater in the currents exiting the Arctic, allowing the key pathways of Arctic freshwater into regions of deep water formation in the North Atlantic to be identified and monitored. These pathways are: the East Greenland Current into the Nordic Seas and the North Atlantic subpolar gyre; the West Greenland Current into Labrador Sea; and the Labrador Current into the general North Atlantic circulation

    Ecosystem analysis of water column processes in the York River estuary, Virginia: Historical records, field studies and modeling analysis

    Get PDF
    Analyses of EPA long-term datasets (1985--1994) combined with field studies and ecosystem model development were used to investigate phytoplankton and nutrient dynamics in the York River estuary. Analysis of the EPA dataset showed that algal blooms occurred during winter-spring followed by smaller summer blooms. Peak phytoplankton biomass during the winter-spring blooms occurred in the mid reach of the mesohaline zone whereas during the summer bloom it occurred in the tidal fresh-mesolialine transition zone. River discharge appears to be the major factor controlling the location and timing of the winter-spring blooms and the relative degree of potential nitrogen (N) and phosphorus (P) limitation. Phytoplankton biomass in tidal fresh water regions was limited by high flushing rates. Water residence time was less than cell doubling rate during seasons of high river flow. Positive correlations between PAR at 1m depth and chlorophyll a suggested light limitation of phytoplankton in the tidal fresh-mesohaline transition zone. A significant relationship between the delta of salinity between surface and bottom water and chlorophyll a distribution suggested the importance of tidal mixing for phytoplankton dynamics in the mesohaline zone. Accumulation of phytoplankton biomass in the mesohaline zone was generally controlled by N with the nutrient supply provided by benthic or bottom water remineralization. In general, phytoplankton dynamics appear controlled to a large extent by resource limitation (bottom-up control) rather than zooplankton grazing (top-down control). The dynamics of phytoplankton size structure were investigated in the freshwater, transitional and estuarine reaches of the York River over an annual cycle. The contribution of large cells (micro-plankton, \u3e20 mum) to total biomass increased downstream during winter whereas that of small cells (nano-, 3--20 mum) pico-plankton, \u3c3 mum) increased downstream during summer. I conclude from these studies that spatial and seasonal variations in size structure of phytoplankton observed on the estuarine scale are determined both by the different preferences of micro-, nano-, and picoplankton for nutrients and by their different light requirements. Analyses of phytoplankton size structure are, thus, necessary to better understand phytoplankton dynamics and to better manage water quality in estuarine systems. An ecosystem model was developed to integrate these data and to investigate mechanisms controlling the size-structured phytoplankton dynamics in the mesohaline zone of the York River estuary. The model developed in Fortran90 included 12 state variables describing the distribution of carbon and nutrients (nitrogen, phosphorus) in the surface mixed layer. Forcing functions included incident radiation, temperature, wind stress, mean flow and tide including advective transport and turbulent mixing. Model results supported the general view that phytoplankton dynamics are controlled by abiotic mechanisms (i.e. bottom-up control) rather than biotic, trophic interactions in the York River estuary. Model sensitivity tests showed that small cells (pico-, nano-sized) are more likely regulated by temperature and light whereas large cells (micro-sized) are regulated by physical processes such as advection, and tidal mixing. Microphytoplankton blooms during winter- pring resulted from a combination of longitudinal advection and vertical diffusion of phytoplankton cells rather than in-situ production
    corecore