126 research outputs found

    Superyachts could support satellite ocean colour validation

    Get PDF
    This is the final version. Available on open access from Frontiers Media via the DOI in this recordData availability statement: The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found below: https://seabass.gsfc.nasa.gov/experiment/SUPERYACHT_SCIENCE; and https://oceandata.sci.gsfc.nasa.gov/directdataaccess/.Visible spectral radiometry of seawater, often referred to as ocean colour, from space, provides a synoptic view of surface phytoplankton, and other optically-active constituents, at high temporal resolution, that is unsurpassed by any other technology. Yet, in-situ observations of ocean colour are critical to the success of the satellite, tracking the calibration of the radiometers and validating atmospheric correction algorithms. Owing to the high cost of commercial field radiometers, as well as the high costs associated with ocean-based field work, ocean colour scientists are plagued by a sparsity of high quality in-situ radiometric observations, particularly in remote regions. In this perspective article, we highlight potential to increase the number of in-situ observations of ocean colour by harnessing superyachts. Using openly-available data processing software, we show that automated ocean colour data collected using a superyacht can be used for the validation of an ocean colour satellite, with comparable results to traditional validation studies. Reaching out to wealthy citizen scientists may help fill gaps in our ability to monitor the colour of the ocean.UKRISimons Foundatio

    Derivation of uncertainty budgets for continuous above-water radiometric measurements along an Atlantic Meridional Transect

    Get PDF
    This is the final version. Available from Optica via the DOI in this record. Data Availability: Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.Fiducial reference measurements are in-situ data traceable to metrology standards, with associated uncertainties. This paper presents the methodology used to derive the uncertainty budget for underway, above-water measurements from the Seabird Hyperspectral Surface Acquisition System deployed on an Atlantic Meridional Transect in 2018. The average uncertainty of remote sensing reflectance for clear sky days was ∼ 6% at wavelengths < 490 nm and ∼ 12% at wavelengths > 550 nm. The environmental variability such as sun position, wind speed and skylight distribution caused the greatest uncertainty. The different components of the uncertainty budget are critically assessed to indicate how the measurement procedure could be improved through reducing the principal uncertainty sources.Natural Environment Research CouncilUK Research and InnovationEuropean CommissionEuropean Space AgencyEuropean Space AgencyEuropean Space AgencyEuropean Space AgencyNational Centre for Earth Observatio

    A review of protocols for Fiducial Reference Measurements of downwelling irradiance for the validation of satellite remote sensing data over water

    Get PDF
    This paper reviews the state of the art of protocols for the measurement of downwelling irradiance in the context of Fiducial Reference Measurements (FRM) of water reflectance for satellite validation. The measurement of water reflectance requires the measurement of water-leaving radiance and downwelling irradiance just above water. For the latter, there are four generic families of method, using: (1) an above-water upward-pointing irradiance sensor; (2) an above-water downward-pointing radiance sensor and a reflective plaque; (3) a Sun-pointing radiance sensor (sunphotometer); or (4) an underwater upward-pointing irradiance sensor deployed at different depths. Each method-except for the fourth, which is considered obsolete for the measurement of above-water downwelling irradiance-is described generically in the FRM context with reference to the measurement equation, documented implementations, and the intra-method diversity of deployment platform and practice. Ideal measurement conditions are stated, practical recommendations are provided on best practice, and guidelines for estimating the measurement uncertainty are provided for each protocol-related component of the measurement uncertainty budget. The state of the art for the measurement of downwelling irradiance is summarized, future perspectives are outlined, and key debates such as the use of reflectance plaques with calibrated or uncalibrated radiometers are presented. This review is based on the practice and studies of the aquatic optics community and the validation of water reflectance, but is also relevant to land radiation monitoring and the validation of satellite-derived land surface reflectance

    Advances in Above- and In-Water Radiometry, Volume 2: Autonomous Atmospheric and Oceanic Observing Systems

    Get PDF
    This publication documents the scientific advances associated with new instrument systems and accessories built to improve above- and in-water observations of the apparent optical properties (AOPs) of optically complex waters. The principal objective is to be prepared for the launch of next-generation ocean color satellites with the most capable commercial off-the-shelf (COTS) instrumentation in the shortest time possible. The Hybridspectral Alternative for Remote Profiling of Optical Observations for NASA Satellites (HARPOONS) is presented as a case example of technologies conceived, developed, and deployed operationally in support of next-generation mission requirements. The field trials, field commissioning, and operational demonstration resulted in a technology readiness level (TRL) value of 9 for a diversity of laboratory and field instrument systems. Separate detailed presentations of the individual instruments provide the hardware designs, accompanying software for data acquisition and processing, and examples of the results achieved. For the laboratory components, calibration and characterization procedures are described along with an estimation of the sources of uncertainty, which culminates in a full uncertainty budget for the radiometers deployed to the field

    Global in situ observations of essential climate and ocean variables at the air–sea interface

    Get PDF
    The air–sea interface is a key gateway in the Earth system. It is where the atmosphere sets the ocean in motion, climate/weather-relevant air–sea processes occur, and pollutants (i.e., plastic, anthropogenic carbon dioxide, radioactive/chemical waste) enter the sea. Hence, accurate estimates and forecasts of physical and biogeochemical processes at this interface are critical for sustainable blue economy planning, growth, and disaster mitigation. Such estimates and forecasts rely on accurate and integrated in situ and satellite surface observations. High-impact uses of ocean surface observations of essential ocean/climate variables (EOVs/ECVs) include (1) assimilation into/validation of weather, ocean, and climate forecast models to improve their skill, impact, and value; (2) ocean physics studies (i.e., heat, momentum, freshwater, and biogeochemical air–sea fluxes) to further our understanding and parameterization of air–sea processes; and (3) calibration and validation of satellite ocean products (i.e., currents, temperature, salinity, sea level, ocean color, wind, and waves). We review strengths and limitations, impacts, and sustainability of in situ ocean surface observations of several ECVs and EOVs. We draw a 10-year vision of the global ocean surface observing network for improved synergy and integration with other observing systems (e.g., satellites), for modeling/forecast efforts, and for a better ocean observing governance. The context is both the applications listed above and the guidelines of frameworks such as the Global Ocean Observing System (GOOS) and Global Climate Observing System (GCOS) (both co-sponsored by the Intergovernmental Oceanographic Commission of UNESCO, IOC–UNESCO; the World Meteorological Organization, WMO; the United Nations Environment Programme, UNEP; and the International Science Council, ISC). Networks of multiparametric platforms, such as the global drifter array, offer opportunities for new and improved in situ observations. Advances in sensor technology (e.g., low-cost wave sensors), high-throughput communications, evolving cyberinfrastructures, and data information systems with potential to improve the scope, efficiency, integration, and sustainability of the ocean surface observing system are explored

    Assessing the influence of different validation protocols on Ocean Colour match-up analyses

    Get PDF
    Abstract Multiple approaches have been used by the Ocean Colour community for validating satellite-derived products using in situ data, with most of them derived from mainly two approaches, one suggested by Bailey and Werdell (2006) (BW06) and one suggested by Zibordi et al. (2009a) (Z09), each with a different set of quality checking and spatiotemporal collocation criteria. The question remains what sort of information is added or missed when choosing one over the other. In this work, the differences among validation approaches were determined by using a common dataset of in situ and satellite data. The match-up exercise was separated into two groups of datasets based on the spatial resolution of the sensors to be validated. Sentinel-3A/OLCI data were selected as a representation of medium spatial resolution sensors, and two validation approaches were selected to this match-up dataset. The high spatial resolution sensors were represented by Sentinel-2A/MSI data, and three validation approaches were tested. Data from the AERONET-OC network were chosen as the common in situ dataset. For Sentinel-3A/OLCI, the number of match-ups varies depending on the validation approach used. Bailey and Werdell (2006) produces 20% more match-ups for Sentinel-3A/OLCI due to its more relaxed filtering criteria compared to the criteria applied by Zibordi et al. (2009a) . The validation metrics vary between different validation methods giving a different impression of accuracy of the satellite products. Also, the satellite data selected by BW06 have a statistical distribution with a higher median and standard deviation when compared to Z09. Similar findings are also confirmed for the match-up analysis conducted for Sentinel-2A/MSI. Therefore, although a common reference dataset was used, the validation statistical results were influenced by the validation approach selected. This does not suggest that one validation protocol is better than the other, but it implies that validation statistics reported in different studies may not always be directly comparable. Additionally, it was determined that BW06 could be a better fit when trying to obtain a sufficient number of match-ups for calibration purposes in the shortest time

    Advances in Above- and In-Water Radiometry, Volume 1: Enhanced Legacy and State-of-the-Art Instrument Suites

    Get PDF
    This publication documents the scientific advances associated with new instrument systems and accessories built to improve above- and in-water observations of the apparent optical properties (AOPs) of aquatic ecosystems. The perspective is to obtain high quality data in offshore, nearshore, and inland waters with equal efficacy. The principal objective is to be prepared for the launch of the next-generation ocean color satellites with the most capable commercial off-the-shelf (COTS) instrumentation in the shortest time possible. The technologies described herein are designed to either improve legacy radiometric systems or to provide entirely new hybrid sampling capabilities, so as to satisfy the requirements established for diverse remote sensing requirements. Both above- and in-water instrument suites are documented with software options for autonomous control of data collection activities. The latter includes an airborne instrument system plus unmanned surface vessel (USV) and buoy concepts

    Ocean remote sensing techniques and applications: a review (Part II)

    Get PDF
    As discussed in the first part of this review paper, Remote Sensing (RS) systems are great tools to study various oceanographic parameters. Part I of this study described different passive and active RS systems and six applications of RS in ocean studies, including Ocean Surface Wind (OSW), Ocean Surface Current (OSC), Ocean Wave Height (OWH), Sea Level (SL), Ocean Tide (OT), and Ship Detection (SD). In Part II, the remaining nine important applications of RS systems for ocean environments, including Iceberg, Sea Ice (SI), Sea Surface temperature (SST), Ocean Surface Salinity (OSS), Ocean Color (OC), Ocean Chlorophyll (OCh), Ocean Oil Spill (OOS), Underwater Ocean, and Fishery are comprehensively reviewed and discussed. For each application, the applicable RS systems, their advantages and disadvantages, various RS and Machine Learning (ML) techniques, and several case studies are discussed.Peer ReviewedPostprint (published version

    Bio-Optical Sensors on Argo Floats

    Get PDF
    The general objective of the IOCCG BIO-Argo working group is to elaborate recommendations for establishing a framework for the future development of a cost-effective, bio-optical float network corresponding to the needs and expectations of the scientific community. In this context, our recommendations will necessarily be broad; they range from the identification of key bio-optical measurements to be implemented on floats, to the real-time management of the data flux resulting from the deployment of a "fleet of floats". Each chapter of this report is dedicated to an essential brick leading towards the goal of implementing a bio-optical profiling float network. The following topics are discussed in the Chapters listed below: - Chapter 2 reviews the scientific objectives that could be tackled through the development of such networks, by allowing some of the gaps in the present spatio-temporal resolution of bio-optical variables to be progressively filled. - Chapter 3 identifies the optical and bio-optical properties that are now amenable to remote and autonomous measurement through the use of optical sensors mounted on floats. - Chapter 4 addresses the question of sensor requirements, in particular with respect to measurements performed from floats. - Chapter 5 proposes and argues for the development of dedicated float missions corresponding to specific scientific objectives and relying on specific optical sensor suites, as well as on specific modes of float operation. - Chapter 6 identifies technological issues that need to be addressed for the various bio-optical float missions to become even more cost-effective. - Chapter 7 covers all aspects of data treatment ranging from the development of various quality control procedures (from real-time to delayed mode) to the architecture required for favoring easy access to data. - Chapter 8 reviews the necessary steps and experience required before the operational implementation of different types of float networks can become a reality.JRC.H.5-Land Resources Managemen

    Lähi-kaugseire meetodite arendamine veekogude seisundi hindamiseks

    Get PDF
    Väitekirja elektrooniline versioon ei sisalda publikatsioone.Veekogude kvaliteedi hindamine on inimkonnale oluline olnud juba tuhandeid aastaid ja viimastel aastakümnetel on rohkem tähelepanu hakatud pöörama ka veekogude ökoloogilisele seisundile. Euroopas on veekogude kvaliteedi hindamise aluseks kaks dokumenti: Euroopa Liidu Vee Raamdirektiiv ja Euroopa Liidu Merestrateegia Raamdirektiiv. Mõlemad dokumendid sätestavad, et aastaks 2020 tuleb Euroopa Liidu veekogudes saavutada „hea“ seisund. Nende eesmärkide täitmiseks tuleb regulaarselt veekogude seisundit seirata. Kuivõrd kõikidelt veekogudelt veeproovide võtmine ja laboris analüüsimine ei ole võimalik (liigne raha ja tööjõukulu) ning lisaks ei anna sellised proovid ülevaadet veekogu seisundi parameetrite ruumilise jaotuse kohta tuleb appi võtta optilised instrumendid. Lisaks välitöödel kasutatavale optikale on Copernicus programmi raames järgnevatel aastakümnetel kättesaadav ka mitu erinevat satelliiditulemit. Nende tulemite kasutamiseks peab aga pidevalt nende täpsust hindama ja leidma täpsemaid arvutusmeetmeid, mis sobiksid konkreetsete parameetrite hindamiseks. Töö käigus tõestati, et vee optilised omadused, nagu neeldumine ja hajumine, varieeruvad Läänemere rannikuosas rohkem, kui on variatsioon ranniku ja mere keskosa vahel. Lisaks absoluutväärtuste erinevusele tuvastati ka spektraalse kuju muutusi eri piirkondade vahel. Tõestati, et elektromagnetkiirguse lähisinfrapuna piirkonda saab rakendada veekogude seires (tavaliselt eeldatakse, et selles spektripiirkonnas on veest tulev signaal null) ja eriti on see kasulik ohtralt lahustunud orgaanikat sisaldavate järvede seires. Testiti ja pakuti välja sobivaid kaugseire algoritme Läänemere vee kvaliteedi parameetrite hindamiseks. Analüüsiti erinevate spektromeetrite tulemuste varieeruvust ja leiti, et mõõtmisprotokolli korrektsel jälgimisel on erinevate sensorite tulemused küll erinevad, ent seire teostamiseks piisavalt sarnased. Lõpetuseks uuriti, millised on erinevate käsispektromeetrite potentsiaalsed rakendused.Knowing the quality of different waterbodies has been essential for human kind for thousands of years. There are two main European Union’s documents guiding the status assessment of water bodies: Water Framework Directive and Marine Strategy Framework Directive. Both of these documents state that all waterbodies in the European Union have to achieve “good” status by the year 2020. In order to fulfil this requirement, water bodies have to be monitored in regular bases. It is impossible to collect laboratory samples from every waterbody as it would be too expensive and would require many workers and still wouldn’t provide information about the spatial distribution of water quality parameters within each waterbody. Optical instruments can provide data fast and over larger areas and therefore have to be included in the monitoring programs. In addition to devices used at the in situ measurements are several satellite products that are available through Copernicus program for the coming decades. These products must, however, be constantly validated with in situ measurements. Additionally, new calculation methods have to be developed to improve the results precision. During this thesis, the variability of optical properties (like absorption and scattering) was assessed in the Baltic Sea. It was studied how much this variability influences the reflectance signal that reaches water remote sensing instruments. The performance of different set-ups and protocols of field spectrometers to collect reflectance data was assessed. The possibility to use near-infrared part of the spectrum in water remote sensing was investigated. In extreme absorbing lakes this is the only part of radiation providing us information about the water properties, but it proved to be useful also in other waterbodies. The performance of many remote sensing algorithms in retrieving water quality parameters in the Baltic Sea was tested. The possible applications for hand-held spectrometers were investigated
    corecore