21,181 research outputs found

    Synergy: An Energy Monitoring and Visualization System

    Get PDF
    The key to becoming a more sustainable society is first learning to take responsibility for the role we play in energy consumption. Real-time energy usage gives energy consumers a sense of responsibility over what they can do to accomplish a much larger goal for the planet, and practically speaking, what they can do to lower the cost to their wallets. Synergy is an energy monitoring and visualization system that enables users to gather information about the energy consumption in a building – small or large – and display that data for the user in real-time. The gathered energy usage data is processed on the edge before being stored in the cloud. The two main benefits of edge processing are issuing electricity hazard warnings immediately and preserving user privacy. In addition to being a scalable solution that intended for use in individual households, commercial offices and city power grids, Synergy is open-source so that it can be implemented more widely. This paper contains a system overview as well as initial finding based on the data collected by Synergy before assessing the impact the system can have on society

    The interaction of lean and building information modeling in construction

    Get PDF
    Lean construction and Building Information Modeling are quite different initiatives, but both are having profound impacts on the construction industry. A rigorous analysis of the myriad specific interactions between them indicates that a synergy exists which, if properly understood in theoretical terms, can be exploited to improve construction processes beyond the degree to which it might be improved by application of either of these paradigms independently. Using a matrix that juxtaposes BIM functionalities with prescriptive lean construction principles, fifty-six interactions have been identified, all but four of which represent constructive interaction. Although evidence for the majority of these has been found, the matrix is not considered complete, but rather a framework for research to explore the degree of validity of the interactions. Construction executives, managers, designers and developers of IT systems for construction can also benefit from the framework as an aid to recognizing the potential synergies when planning their lean and BIM adoption strategies

    Analysis framework for the interaction between lean construction and building information modelling

    Get PDF
    Building with Building Information Modelling (BIM) changes design and production processes. But can BIM be used to support process changes designed according to lean production and lean construction principles? To begin to answer this question we provide a conceptual analysis of the interaction of lean construction and BIM for improving construction. This was investigated by compiling a detailed listing of lean construction principles and BIM functionalities which are relevant from this perspective. These were drawn from a detailed literature survey. A research framework for analysis of the interaction between lean and BIM was then compiled. The goal of the framework is to both guide and stimulate research; as such, the approach adopted up to this point is constructive. Ongoing research has identified 55 such interactions, the majority of which show positive synergy between the two

    Research and Education in Computational Science and Engineering

    Get PDF
    Over the past two decades the field of computational science and engineering (CSE) has penetrated both basic and applied research in academia, industry, and laboratories to advance discovery, optimize systems, support decision-makers, and educate the scientific and engineering workforce. Informed by centuries of theory and experiment, CSE performs computational experiments to answer questions that neither theory nor experiment alone is equipped to answer. CSE provides scientists and engineers of all persuasions with algorithmic inventions and software systems that transcend disciplines and scales. Carried on a wave of digital technology, CSE brings the power of parallelism to bear on troves of data. Mathematics-based advanced computing has become a prevalent means of discovery and innovation in essentially all areas of science, engineering, technology, and society; and the CSE community is at the core of this transformation. However, a combination of disruptive developments---including the architectural complexity of extreme-scale computing, the data revolution that engulfs the planet, and the specialization required to follow the applications to new frontiers---is redefining the scope and reach of the CSE endeavor. This report describes the rapid expansion of CSE and the challenges to sustaining its bold advances. The report also presents strategies and directions for CSE research and education for the next decade.Comment: Major revision, to appear in SIAM Revie

    Analysis Framework for the Interaction Between Lean Construction and Building Information Modelling

    Get PDF
    Building with Building Information Modelling (BIM) changes design and production processes. But can BIM be used to support process changes designed according to lean production and lean construction principles? To begin to answer this question we provide a conceptual analysis of the interaction of lean construction and BIM for improving construction. This was investigated by compiling a detailed listing of lean construction principles and BIM functionalities which are relevant from this perspective. These were drawn from a detailed literature survey. A research framework for analysis of the interaction between lean and BIM was then compiled. The goal of the framework is to both guide and stimulate research; as such, the approach adopted up to this point is constructive. Ongoing research has identified 55 such interactions, the majority of which show positive synergy between the two

    Software Challenges For HL-LHC Data Analysis

    Full text link
    The high energy physics community is discussing where investment is needed to prepare software for the HL-LHC and its unprecedented challenges. The ROOT project is one of the central software players in high energy physics since decades. From its experience and expectations, the ROOT team has distilled a comprehensive set of areas that should see research and development in the context of data analysis software, for making best use of HL-LHC's physics potential. This work shows what these areas could be, why the ROOT team believes investing in them is needed, which gains are expected, and where related work is ongoing. It can serve as an indication for future research proposals and cooperations

    Virtual Astronomy, Information Technology, and the New Scientific Methodology

    Get PDF
    All sciences, including astronomy, are now entering the era of information abundance. The exponentially increasing volume and complexity of modern data sets promises to transform the scientific practice, but also poses a number of common technological challenges. The Virtual Observatory concept is the astronomical community's response to these challenges: it aims to harness the progress in information technology in the service of astronomy, and at the same time provide a valuable testbed for information technology and applied computer science. Challenges broadly fall into two categories: data handling (or "data farming"), including issues such as archives, intelligent storage, databases, interoperability, fast networks, etc., and data mining, data understanding, and knowledge discovery, which include issues such as automated clustering and classification, multivariate correlation searches, pattern recognition, visualization in highly hyperdimensional parameter spaces, etc., as well as various applications of machine learning in these contexts. Such techniques are forming a methodological foundation for science with massive and complex data sets in general, and are likely to have a much broather impact on the modern society, commerce, information economy, security, etc. There is a powerful emerging synergy between the computationally enabled science and the science-driven computing, which will drive the progress in science, scholarship, and many other venues in the 21st century

    Modelling fungal colonies and communities:challenges and opportunities

    Get PDF
    This contribution, based on a Special Interest Group session held during IMC9, focuses on physiological based models of filamentous fungal colony growth and interactions. Fungi are known to be an important component of ecosystems, in terms of colony dynamics and interactions within and between trophic levels. We outline some of the essential components necessary to develop a fungal ecology: a mechanistic model of fungal colony growth and interactions, where observed behaviour can be linked to underlying function; a model of how fungi can cooperate at larger scales; and novel techniques for both exploring quantitatively the scales at which fungi operate; and addressing the computational challenges arising from this highly detailed quantification. We also propose a novel application area for fungi which may provide alternate routes for supporting scientific study of colony behaviour. This synthesis offers new potential to explore fungal community dynamics and the impact on ecosystem functioning

    Effects of the Interactions Between LPS and BIM on Workflow in Two Building Design Projects

    Get PDF
    Variability in design workflow causes delays and undermines the performance of building projects. As lean processes, the Last Planner System (LPS) and Building Information Modeling (BIM) can improve workflow in building projects through features that reduce waste. Since its introduction, BIM has had significant positive influence on workflow in building design projects, but these have been rarely considered in combination with LPS. This paper is part of a postgraduate research focusing on the implementation of LPS weekly work plans in two BIM-based building design projects to achieve better workflow. It reports on the interactions between lean principles of LPS and BIM functionalities in two building design projects that, from the perspective of an interaction matrix developed by Sacks et al. (2010a), promote workflow
    corecore