2,007 research outputs found

    Spectral asymptotics of the Laplacian on supercritical bond-percolation graphs

    Get PDF
    We investigate Laplacians on supercritical bond-percolation graphs with different boundary conditions at cluster borders. The integrated density of states of the Dirichlet Laplacian is found to exhibit a Lifshits tail at the lower spectral edge, while that of the Neumann Laplacian shows a van Hove asymptotics, which results from the percolating cluster. At the upper spectral edge, the behaviour is reversed.Comment: 16 pages, typos corrected, to appear in J. Funct. Ana

    The Widom-Rowlinson Model on the Delaunay Graph

    Get PDF
    We establish phase transitions for continuum Delaunay multi-type particle systems (continuum Potts or Widom-Rowlinson models) with a repulsive interaction between particles of different types. Our interaction potential depends solely on the length of the Delaunay edges. We show that a phase transition occurs for sufficiently large activities and for sufficiently large potential parameter proving an old conjecture of Lebowitz and Lieb extended to the Delaunay structure. Our approach involves a Delaunay random-cluster representation analogous to the Fortuin-Kasteleyn representation of the Potts model. The phase transition manifests itself in the mixed site-bond percolation of the corresponding random-cluster model. Our proofs rely mainly on geometric properties of Delaunay tessellations in R2\mathbb{R}^2 and on recent studies [DDG12] of Gibbs measures for geometry-dependent interactions. The main tool is a uniform bound on the number of connected components in the Delaunay graph which provides a novel approach to Delaunay Widom Rowlinson models based on purely geometric arguments. The interaction potential ensures that shorter Delaunay edges are more likely to be open and thus offsets the possibility of having an unbounded number of connected components.Comment: 36 pages, 11 figure

    Phase transitions in Delaunay Potts models

    Full text link
    We establish phase transitions for classes of continuum Delaunay multi-type particle systems (continuum Potts models) with infinite range repulsive interaction between particles of different type. In one class of the Delaunay Potts models studied the repulsive interaction is a triangle (multi-body) interaction whereas in the second class the interaction is between pairs (edges) of the Delaunay graph. The result for the edge model is an extension of finite range results in \cite{BBD04} for the Delaunay graph and in \cite{GH96} for continuum Potts models to an infinite range repulsion decaying with the edge length. This is a proof of an old conjecture of Lebowitz and Lieb. The repulsive triangle interactions have infinite range as well and depend on the underlying geometry and thus are a first step towards studying phase transitions for geometry-dependent multi-body systems. Our approach involves a Delaunay random-cluster representation analogous to the Fortuin-Kasteleyn representation of the Potts model. The phase transitions manifest themselves in the percolation of the corresponding random-cluster model. Our proofs rely on recent studies \cite{DDG12} of Gibbs measures for geometry-dependent interactions

    Percolation on sparse random graphs with given degree sequence

    Full text link
    We study the two most common types of percolation process on a sparse random graph with a given degree sequence. Namely, we examine first a bond percolation process where the edges of the graph are retained with probability p and afterwards we focus on site percolation where the vertices are retained with probability p. We establish critical values for p above which a giant component emerges in both cases. Moreover, we show that in fact these coincide. As a special case, our results apply to power law random graphs. We obtain rigorous proofs for formulas derived by several physicists for such graphs.Comment: 20 page

    Equality of Lifshitz and van Hove exponents on amenable Cayley graphs

    Get PDF
    We study the low energy asymptotics of periodic and random Laplace operators on Cayley graphs of amenable, finitely generated groups. For the periodic operator the asymptotics is characterised by the van Hove exponent or zeroth Novikov-Shubin invariant. The random model we consider is given in terms of an adjacency Laplacian on site or edge percolation subgraphs of the Cayley graph. The asymptotic behaviour of the spectral distribution is exponential, characterised by the Lifshitz exponent. We show that for the adjacency Laplacian the two invariants/exponents coincide. The result holds also for more general symmetric transition operators. For combinatorial Laplacians one has a different universal behaviour of the low energy asymptotics of the spectral distribution function, which can be actually established on quasi-transitive graphs without an amenability assumption. The latter result holds also for long range bond percolation models

    Euler Number and Percolation Threshold on a Square Lattice with Diagonal Connection Probability and Revisiting the Island-Mainland Transition

    Get PDF
    We report some novel properties of a square lattice filled with white sites, randomly occupied by black sites (with probability pp). We consider connections up to second nearest neighbours, according to the following rule. Edge-sharing sites, i.e. nearest neighbours of similar type are always considered to belong to the same cluster. A pair of black corner-sharing sites, i.e. second nearest neighbours may form a 'cross-connection' with a pair of white corner-sharing sites. In this case assigning connected status to both pairs simultaneously, makes the system quasi-three dimensional, with intertwined black and white clusters. The two-dimensional character of the system is preserved by considering the black diagonal pair to be connected with a probability qq, in which case the crossing white pair of sites are deemed disjoint. If the black pair is disjoint, the white pair is considered connected. In this scenario we investigate (i) the variation of the Euler number χ(p) [=NB(p)−NW(p)]\chi(p) \ [=N_B(p)-N_W(p)] versus pp graph for varying qq, (ii) variation of the site percolation threshold with qq and (iii) size distribution of the black clusters for varying pp, when q=0.5q=0.5. Here NBN_B is the number of black clusters and NWN_W is the number of white clusters, at a certain probability pp. We also discuss the earlier proposed 'Island-Mainland' transition (Khatun, T., Dutta, T. & Tarafdar, S. Eur. Phys. J. B (2017) 90: 213) and show mathematically that the proposed transition is not, in fact, a critical phase transition and does not survive finite size scaling. It is also explained mathematically why clusters of size 1 are always the most numerous
    • …
    corecore