34,925 research outputs found

    A secure and lightweight ad-hoc routing algorithm for personal networks

    Get PDF
    Over the past few years, there has been increasing interest in utilizing Personal Area Networks (PANs) to offer users innovative and personalized services. This interest is a consequence of the widespread use of mobile devices such as laptops, mobile phones, PDAs, digital cameras, wireless headsets, etc. to carry out a variety of user-centric tasks. The PAN itself is built upon an ad-hoc network where devices trust their neighbors to route their packets. The cooperative nature of ad-hoc networks allows malicious nodes to easily cripple the network by inserting false route information, replaying old messages, modifying messages of other nodes, etc. An applicable area still under research, and the focus of this paper, is secure routing protocols for ad-hoc networks. To achieve availability in the PAN, the routing protocol used must be robust against both dynamically changing topology and malicious attacks. However, the heterogeneous nature of Personal Network (PN) devices means that traditional security mechanisms are too resource intensive to be sufficient by themselves. This paper describes a new ad-hoc secure routing protocol for Personal Networks (PNs), suitable in a limited multi-hop scenario. This protocol is based on ADOV and relies on efficient cryptographic primitives to safeguard the security and privacy of PN users. Following that, a number of attacks in the area of ad-hoc networks are discussed, and it is shown that the new algorithm protects against multiple un-coordinated active attackers, in spite of compromised nodes in the network

    Private Data System Enabling Self-Sovereign Storage Managed by Executable Choreographies

    Full text link
    With the increased use of Internet, governments and large companies store and share massive amounts of personal data in such a way that leaves no space for transparency. When a user needs to achieve a simple task like applying for college or a driving license, he needs to visit a lot of institutions and organizations, thus leaving a lot of private data in many places. The same happens when using the Internet. These privacy issues raised by the centralized architectures along with the recent developments in the area of serverless applications demand a decentralized private data layer under user control. We introduce the Private Data System (PDS), a distributed approach which enables self-sovereign storage and sharing of private data. The system is composed of nodes spread across the entire Internet managing local key-value databases. The communication between nodes is achieved through executable choreographies, which are capable of preventing information leakage when executing across different organizations with different regulations in place. The user has full control over his private data and is able to share and revoke access to organizations at any time. Even more, the updates are propagated instantly to all the parties which have access to the data thanks to the system design. Specifically, the processing organizations may retrieve and process the shared information, but are not allowed under any circumstances to store it on long term. PDS offers an alternative to systems that aim to ensure self-sovereignty of specific types of data through blockchain inspired techniques but face various problems, such as low performance. Both approaches propose a distributed database, but with different characteristics. While the blockchain-based systems are built to solve consensus problems, PDS's purpose is to solve the self-sovereignty aspects raised by the privacy laws, rules and principles.Comment: DAIS 201

    A security architecture for personal networks

    Get PDF
    Abstract Personal Network (PN) is a new concept utilizing pervasive computing to meet the needs of the user. As PNs edge closer towards reality, security becomes an important concern since any vulnerability in the system will limit its practical use. In this paper we introduce a security architecture designed for PNs. Our aim is to use secure but lightweight mechanisms suitable for resource constrained devices and wireless communication. We support pair-wise keys for secure cluster formation and use group keys for securing intra-cluster communication. In order to analyze the performance of our proposed mechanisms, we carry out simulations using ns-2. The results show that our mechanisms have a low overhead in terms of delay and energy consumption

    BANZKP: a Secure Authentication Scheme Using Zero Knowledge Proof for WBANs

    Full text link
    -Wireless body area network(WBAN) has shown great potential in improving healthcare quality not only for patients but also for medical staff. However, security and privacy are still an important issue in WBANs especially in multi-hop architectures. In this paper, we propose and present the design and the evaluation of a secure lightweight and energy efficient authentication scheme BANZKP based on an efficient cryptographic protocol, Zero Knowledge Proof (ZKP) and a commitment scheme. ZKP is used to confirm the identify of the sensor nodes, with small computational requirement, which is favorable for body sensors given their limited resources, while the commitment scheme is used to deal with replay attacks and hence the injection attacks by committing a message and revealing the key later. Our scheme reduces the memory requirement by 56.13 % compared to TinyZKP [13], the comparable alternative so far for Body Area Networks, and uses 10 % less energy

    A personal networking solution

    Get PDF
    This paper presents an overview of research being conducted on Personal Networking Solutions within the Mobile VCE Personal Distributed Environment Work Area. In particular it attempts to highlight areas of commonality with the MAGNET initiative. These areas include trust of foreign devices and service providers, dynamic real-time service negotiation to permit context-aware service delivery, an automated controller algorithm for wireless ad hoc networks, and routing protocols for ad hoc networking environments. Where possible references are provided to Mobile VCE publications to enable further reading

    Efficient Algorithms for Parsing the DOP Model

    Full text link
    Excellent results have been reported for Data-Oriented Parsing (DOP) of natural language texts (Bod, 1993). Unfortunately, existing algorithms are both computationally intensive and difficult to implement. Previous algorithms are expensive due to two factors: the exponential number of rules that must be generated and the use of a Monte Carlo parsing algorithm. In this paper we solve the first problem by a novel reduction of the DOP model to a small, equivalent probabilistic context-free grammar. We solve the second problem by a novel deterministic parsing strategy that maximizes the expected number of correct constituents, rather than the probability of a correct parse tree. Using the optimizations, experiments yield a 97% crossing brackets rate and 88% zero crossing brackets rate. This differs significantly from the results reported by Bod, and is comparable to results from a duplication of Pereira and Schabes's (1992) experiment on the same data. We show that Bod's results are at least partially due to an extremely fortuitous choice of test data, and partially due to using cleaner data than other researchers.Comment: 10 page

    Multi-hop Cooperative Relaying for Energy Efficient In Vivo Communications

    Get PDF
    This paper investigates cooperative relaying to support energy efficient in vivo communications. In such a network, the in vivo source nodes transmit their sensing information to an on-body destination node either via direct communications or by employing on-body cooperative relay nodes in order to promote energy efficiency. Two relay modes are investigated, namely single-hop and multi-hop (two-hop) relaying. In this context, the paper objective is to select the optimal transmission mode (direct, single-hop, or two-hop relaying) and relay assignment (if cooperative relaying is adopted) for each source node that results in the minimum per bit average energy consumption for the in vivo network. The problem is formulated as a binary program that can be efficiently solved using commercial optimization solvers. Numerical results demonstrate the significant improvement in energy consumption and quality-of-service (QoS) support when multi-hop communication is adopted
    • 

    corecore