499 research outputs found

    Global Grids and Software Toolkits: A Study of Four Grid Middleware Technologies

    Full text link
    Grid is an infrastructure that involves the integrated and collaborative use of computers, networks, databases and scientific instruments owned and managed by multiple organizations. Grid applications often involve large amounts of data and/or computing resources that require secure resource sharing across organizational boundaries. This makes Grid application management and deployment a complex undertaking. Grid middlewares provide users with seamless computing ability and uniform access to resources in the heterogeneous Grid environment. Several software toolkits and systems have been developed, most of which are results of academic research projects, all over the world. This chapter will focus on four of these middlewares--UNICORE, Globus, Legion and Gridbus. It also presents our implementation of a resource broker for UNICORE as this functionality was not supported in it. A comparison of these systems on the basis of the architecture, implementation model and several other features is included.Comment: 19 pages, 10 figure

    Steering in computational science: mesoscale modelling and simulation

    Full text link
    This paper outlines the benefits of computational steering for high performance computing applications. Lattice-Boltzmann mesoscale fluid simulations of binary and ternary amphiphilic fluids in two and three dimensions are used to illustrate the substantial improvements which computational steering offers in terms of resource efficiency and time to discover new physics. We discuss details of our current steering implementations and describe their future outlook with the advent of computational grids.Comment: 40 pages, 11 figures. Accepted for publication in Contemporary Physic

    The Clarens Web Service Framework for Distributed Scientific Analysis in Grid Projects

    Get PDF
    Large scientific collaborations are moving towards service oriented architecutres for implementation and deployment of globally distributed systems. Clarens is a high performance, easy to deploy Web Service framework that supports the construction of such globally distributed systems. This paper discusses some of the core functionality of Clarens that the authors believe is important for building distributed systems based on Web Services that support scientific analysis

    The OMII Software – Demonstrations and Comparisons between two different deployments for Client-Server Distributed Systems

    No full text
    This paper describes the key elements of the OMII software and the scenarios which OMII software can be deployed to achieve distributed computing in the UK e-Science Community, where two different deployments for Client-Server distributed systems are demonstrated. Scenarios and experiments for each deployment have been described, with its advantages and disadvantages compared and analyzed. We conclude that our first deployment is more relevant for system administrators or developers, and the second deployment is more suitable for users’ perspective which they can send and check job status for hundred job submissions

    Enhancing Job Scheduling of an Atmospheric Intensive Data Application

    Get PDF
    Nowadays, e-Science applications involve great deal of data to have more accurate analysis. One of its application domains is the Radio Occultation which manages satellite data. Grid Processing Management is a physical infrastructure geographically distributed based on Grid Computing, that is implemented for the overall processing Radio Occultation analysis. After a brief description of algorithms adopted to characterize atmospheric profiles, the paper presents an improvement of job scheduling in order to decrease processing time and optimize resource utilization. Extension of grid computing capacity is implemented by virtual machines in existing physical Grid in order to satisfy temporary job requests. Also scheduling plays an important role in the infrastructure that is handled by a couple of schedulers which are developed to manage data automaticall

    The GRB Library: Grid Computing with Globus in C

    Get PDF
    none5In this paper we describe a library layered on top of basic Globus services. The library provides high level services, can be used to develop both web-based and desktop grid applications, it is relatively small and very easy to use. We show its usefulness in the context of a web-based Grid Resource Broker developed using the library as a building block, and in the context of a metacomputing experiment demonstrated at the SuperComputing 2000 conference.Aloisio G.; Cafaro M.; Blasi E.; De Paolis L.; Epicoco I.Aloisio, Giovanni; Cafaro, Massimo; Blasi, E.; DE PAOLIS, Lucio Tommaso; Epicoco, Ital

    Kranc: a Mathematica application to generate numerical codes for tensorial evolution equations

    Full text link
    We present a suite of Mathematica-based computer-algebra packages, termed "Kranc", which comprise a toolbox to convert (tensorial) systems of partial differential evolution equations to parallelized C or Fortran code. Kranc can be used as a "rapid prototyping" system for physicists or mathematicians handling very complicated systems of partial differential equations, but through integration into the Cactus computational toolkit we can also produce efficient parallelized production codes. Our work is motivated by the field of numerical relativity, where Kranc is used as a research tool by the authors. In this paper we describe the design and implementation of both the Mathematica packages and the resulting code, we discuss some example applications, and provide results on the performance of an example numerical code for the Einstein equations.Comment: 24 pages, 1 figure. Corresponds to journal versio

    The Lattice Project: A Multi-model Grid Computing System

    Get PDF
    This thesis presents The Lattice Project, a system that combines multiple models of Grid computing. Grid computing is a paradigm for leveraging multiple distributed computational resources to solve fundamental scientific problems that require large amounts of computation. The system combines the traditional Service model of Grid computing with the Desktop model of Grid computing, and is thus capable of utilizing diverse resources such as institutional desktop computers, dedicated computing clusters, and machines volunteered by the general public to advance science. The production Grid system includes a fully-featured user interface, support for a large number of popular scientific applications, a robust Grid-level scheduler, and novel enhancements such as a Grid-wide file caching scheme. A substantial amount of scientific research has already been completed using The Lattice Project
    • 

    corecore