231 research outputs found

    Fairness Comparison of Uplink NOMA and OMA

    Full text link
    In this paper, we compare the resource allocation fairness of uplink communications between non-orthogonal multiple access (NOMA) schemes and orthogonal multiple access (OMA) schemes. Through characterizing the contribution of the individual user data rate to the system sum rate, we analyze the fundamental reasons that NOMA offers a more fair resource allocation than that of OMA in asymmetric channels. Furthermore, a fairness indicator metric based on Jain's index is proposed to measure the asymmetry of multiuser channels. More importantly, the proposed metric provides a selection criterion for choosing between NOMA and OMA for fair resource allocation. Based on this discussion, we propose a hybrid NOMA-OMA scheme to further enhance the users fairness. Simulation results confirm the accuracy of the proposed metric and demonstrate the fairness enhancement of the proposed hybrid NOMA-OMA scheme compared to the conventional OMA and NOMA schemes.Comment: 6 pages, accepted for publication, VTC 2017, Spring, Sydne

    A Tutorial on Nonorthogonal Multiple Access for 5G and Beyond

    Full text link
    Today's wireless networks allocate radio resources to users based on the orthogonal multiple access (OMA) principle. However, as the number of users increases, OMA based approaches may not meet the stringent emerging requirements including very high spectral efficiency, very low latency, and massive device connectivity. Nonorthogonal multiple access (NOMA) principle emerges as a solution to improve the spectral efficiency while allowing some degree of multiple access interference at receivers. In this tutorial style paper, we target providing a unified model for NOMA, including uplink and downlink transmissions, along with the extensions tomultiple inputmultiple output and cooperative communication scenarios. Through numerical examples, we compare the performances of OMA and NOMA networks. Implementation aspects and open issues are also detailed.Comment: 25 pages, 10 figure

    Outage Performance of Uplink Rate Splitting Multiple Access with Randomly Deployed Users

    Full text link
    With the rapid proliferation of smart devices in wireless networks, more powerful technologies are expected to fulfill the network requirements of high throughput, massive connectivity, and diversify quality of service. To this end, rate splitting multiple access (RSMA) is proposed as a promising solution to improve spectral efficiency and provide better fairness for the next-generation mobile networks. In this paper, the outage performance of uplink RSMA transmission with randomly deployed users is investigated, taking both user scheduling schemes and power allocation strategies into consideration. Specifically, the greedy user scheduling (GUS) and cumulative distribution function (CDF) based user scheduling (CUS) schemes are considered, which could maximize the rate performance and guarantee scheduling fairness, respectively. Meanwhile, we re-investigate cognitive power allocation (CPA) strategy, and propose a new rate fairness-oriented power allocation (FPA) strategy to enhance the scheduled users' rate fairness. By employing order statistics and stochastic geometry, an analytical expression of the outage probability for each scheduling scheme combining power allocation is derived to characterize the performance. To get more insights, the achieved diversity order of each scheme is also derived. Theoretical results demonstrate that both GUS and CUS schemes applying CPA or FPA strategy can achieve full diversity orders, and the application of CPA strategy in RSMA can effectively eliminate the secondary user's diversity order constraint from the primary user. Simulation results corroborate the accuracy of the analytical expressions, and show that the proposed FPA strategy can achieve excellent rate fairness performance in high signal-to-noise ratio region.Comment: 38 pages,8 figure

    Advanced NOMA Assisted Semi-Grant-Free Transmission Schemes for Randomly Distributed Users

    Full text link
    Non-orthogonal multiple access (NOMA) assisted semi-grant-free (SGF) transmission has recently received significant research attention due to its outstanding ability of serving grant-free (GF) users with grant-based (GB) users' spectrum, {\color{blue}which can greatly improve the spectrum efficiency and effectively relieve the massive access problem of 5G and beyond networks. In this paper, we investigate the performance of SGF schemes under more practical settings.} Firstly, we study the outage performance of the best user scheduling SGF scheme (BU-SGF) by considering the impacts of Rayleigh fading, path loss, and random user locations. Then, a fair SGF scheme is proposed by applying cumulative distribution function (CDF)-based scheduling (CS-SGF), which can also make full use of multi-user diversity. Moreover, by employing the theories of order statistics and stochastic geometry, we analyze the outage performances of both BU-SGF and CS-SGF schemes. Results show that full diversity orders can be achieved only when the served users' data rate is capped, which severely limit the rate performance of SGF schemes. To further address this issue, we propose a distributed power control strategy to relax such data rate constraint, and derive closed-form expressions of the two schemes' outage performances under this strategy. Finally, simulation results validate the fairness performance of the proposed CS-SGF scheme, the effectiveness of the power control strategy, and the accuracy of the theoretical analyses.Comment: 41 pages, 8 figure
    • …
    corecore