508 research outputs found

    Constant Rate Approximate Maximum Margin Algorithms

    No full text
    We present a new class of perceptron-like algorithms with margin in which the “effective” learning rate, defined as the ratio of the learning rate to the length of the weight vector, remains constant. We prove that the new algorithms converge in a finite number of steps and show that there exists a limit of the parameters involved in which convergence leads to classification with maximum margin

    From Cutting Planes Algorithms to Compression Schemes and Active Learning

    Get PDF
    Cutting-plane methods are well-studied localization(and optimization) algorithms. We show that they provide a natural framework to perform machinelearning ---and not just to solve optimization problems posed by machinelearning--- in addition to their intended optimization use. In particular, theyallow one to learn sparse classifiers and provide good compression schemes.Moreover, we show that very little effort is required to turn them intoeffective active learning methods. This last property provides a generic way todesign a whole family of active learning algorithms from existing passivemethods. We present numerical simulations testifying of the relevance ofcutting-plane methods for passive and active learning tasks.Comment: IJCNN 2015, Jul 2015, Killarney, Ireland. 2015, \<http://www.ijcnn.org/\&g

    Calibrated Surrogate Losses for Classification with Label-Dependent Costs

    Full text link
    We present surrogate regret bounds for arbitrary surrogate losses in the context of binary classification with label-dependent costs. Such bounds relate a classifier's risk, assessed with respect to a surrogate loss, to its cost-sensitive classification risk. Two approaches to surrogate regret bounds are developed. The first is a direct generalization of Bartlett et al. [2006], who focus on margin-based losses and cost-insensitive classification, while the second adopts the framework of Steinwart [2007] based on calibration functions. Nontrivial surrogate regret bounds are shown to exist precisely when the surrogate loss satisfies a "calibration" condition that is easily verified for many common losses. We apply this theory to the class of uneven margin losses, and characterize when these losses are properly calibrated. The uneven hinge, squared error, exponential, and sigmoid losses are then treated in detail.Comment: 33 pages, 7 figure
    corecore