628 research outputs found

    Edge Intersection Graphs of L-Shaped Paths in Grids

    Full text link
    In this paper we continue the study of the edge intersection graphs of one (or zero) bend paths on a rectangular grid. That is, the edge intersection graphs where each vertex is represented by one of the following shapes: \llcorner,\ulcorner, \urcorner, \lrcorner, and we consider zero bend paths (i.e., | and -) to be degenerate \llcorners. These graphs, called B1B_1-EPG graphs, were first introduced by Golumbic et al (2009). We consider the natural subclasses of B1B_1-EPG formed by the subsets of the four single bend shapes (i.e., {\llcorner}, {\llcorner,\ulcorner}, {\llcorner,\urcorner}, and {\llcorner,\ulcorner,\urcorner}) and we denote the classes by [\llcorner], [\llcorner,\ulcorner], [\llcorner,\urcorner], and [\llcorner,\ulcorner,\urcorner] respectively. Note: all other subsets are isomorphic to these up to 90 degree rotation. We show that testing for membership in each of these classes is NP-complete and observe the expected strict inclusions and incomparability (i.e., [\llcorner] \subsetneq [\llcorner,\ulcorner], [\llcorner,\urcorner] \subsetneq [\llcorner,\ulcorner,\urcorner] \subsetneq B1B_1-EPG; also, [\llcorner,\ulcorner] is incomparable with [\llcorner,\urcorner]). Additionally, we give characterizations and polytime recognition algorithms for special subclasses of Split \cap [\llcorner].Comment: 14 pages, to appear in DAM special issue for LAGOS'1

    Hamilton cycles in 5-connected line graphs

    Get PDF
    A conjecture of Carsten Thomassen states that every 4-connected line graph is hamiltonian. It is known that the conjecture is true for 7-connected line graphs. We improve this by showing that any 5-connected line graph of minimum degree at least 6 is hamiltonian. The result extends to claw-free graphs and to Hamilton-connectedness

    On factors of 4-connected claw-free graphs

    Get PDF
    We consider the existence of several different kinds of factors in 4-connected claw-free graphs. This is motivated by the following two conjectures which are in fact equivalent by a recent result of the third author. Conjecture 1 (Thomassen): Every 4-connected line graph is Hamiltonian, i.e. has a connected 2-factor. Conjecture 2 (Matthews and Sumner): Every 4-connected claw-free graph is hamiltonian. We first show that Conjecture 2 is true within the class of hourglass-free graphs, i.e. graphs that do not contain an induced subgraph isomorphic to two triangles meeting in exactly one vertex. Next we show that a weaker form of Conjecture 2 is true, in which the conclusion is replaced by the conclusion that there exists a connected spanning subgraph in which each vertex has degree two or four. Finally we show that Conjecture 1 and 2 are equivalent to seemingly weaker conjectures in which the conclusion is replaced by the conclusion that there exists a spanning subgraph consisting of a bounded number of paths. \u

    On some intriguing problems in Hamiltonian graph theory -- A survey

    Get PDF
    We survey results and open problems in Hamiltonian graph theory centred around three themes: regular graphs, tt-tough graphs, and claw-free graphs
    corecore