500 research outputs found

    Signal processing architectures for automotive high-resolution MIMO radar systems

    Get PDF
    To date, the digital signal processing for an automotive radar sensor has been handled in an efficient way by general purpose signal processors and microcontrollers. However, increasing resolution requirements for automated driving on the one hand, as well as rapidly growing numbers of manufactured sensors on the other hand, can provoke a paradigm change in the near future. The design and development of highly specialized hardware accelerators could become a viable option - at least for the most demanding processing steps with data rates of several gigabits per second. In this work, application-specific signal processing architectures for future high-resolution multiple-input and multiple-output (MIMO) radar sensors are designed, implemented, investigated and optimized. A focus is set on real-time performance such that even sophisticated algorithms can be computed sufficiently fast. The full processing chain from the received baseband signals to a list of detections is considered, comprising three major steps: Spectrum analysis, target detection and direction of arrival estimation. The developed architectures are further implemented on a field-programmable gate array (FPGA) and important measurements like resource consumption, power dissipation or data throughput are evaluated and compared with other examples from literature. A substantial dataset, based on more than 3600 different parametrizations and variants, has been established with the help of a model-based design space exploration and is provided as part of this work. Finally, an experimental radar sensor has been built and is used under real-world conditions to verify the effectiveness of the proposed signal processing architectures.Bisher wurde die digitale Signalverarbeitung für automobile Radarsensoren auf eine effiziente Art und Weise von universell verwendbaren Mikroprozessoren bewältigt. Jedoch können steigende Anforderungen an das Auflösungsvermögen für hochautomatisiertes Fahren einerseits, sowie schnell wachsende Stückzahlen produzierter Sensoren andererseits, einen Paradigmenwechsel in naher Zukunft bewirken. Die Entwicklung von hochgradig spezialisierten Hardwarebeschleunigern könnte sich als eine praktikable Alternative etablieren - zumindest für die anspruchsvollsten Rechenschritte mit Datenraten von mehreren Gigabits pro Sekunde. In dieser Arbeit werden anwendungsspezifische Signalverarbeitungsarchitekturen für zukünftige, hochauflösende, MIMO Radarsensoren entworfen, realisiert, untersucht und optimiert. Der Fokus liegt dabei stets auf der Echtzeitfähigkeit, sodass selbst anspruchsvolle Algorithmen in einer ausreichend kurzen Zeit berechnet werden können. Die komplette Signalverarbeitungskette, beginnend von den empfangenen Signalen im Basisband bis hin zu einer Liste von Detektion, wird in dieser Arbeit behandelt. Die Kette gliedert sich im Wesentlichen in drei größere Teilschritte: Spektralanalyse, Zieldetektion und Winkelschätzung. Des Weiteren werden die entwickelten Architekturen auf einem FPGA implementiert und wichtige Kennzahlen wie Ressourcenverbrauch, Stromverbrauch oder Datendurchsatz ausgewertet und mit anderen Beispielen aus der Literatur verglichen. Ein umfangreicher Datensatz, welcher mehr als 3600 verschiedene Parametrisierungen und Varianten beinhaltet, wurde mit Hilfe einer modellbasierten Entwurfsraumexploration erstellt und ist in dieser Arbeit enthalten. Schließlich wurde ein experimenteller Radarsensor aufgebaut und dazu benutzt, die entworfenen Signalverarbeitungsarchitekturen unter realen Umgebungsbedingungen zu verifizieren

    Mathematical optimization and game theoretic methods for radar networks

    Get PDF
    Radar systems are undoubtedly included in the hall of the most momentous discoveries of the previous century. Although radars were initially used for ship and aircraft detection, nowadays these systems are used in highly diverse fields, expanding from civil aviation, marine navigation and air-defence to ocean surveillance, meteorology and medicine. Recent advances in signal processing and the constant development of computational capabilities led to radar systems with impressive surveillance and tracking characteristics but on the other hand the continuous growth of distributed networks made them susceptible to multisource interference. This thesis aims at addressing vulnerabilities of modern radar networks and further improving their characteristics through the design of signal processing algorithms and by utilizing convex optimization and game theoretic methods. In particular, the problems of beamforming, power allocation, jammer avoidance and uncertainty within the context of multiple-input multiple-output (MIMO) radar networks are addressed. In order to improve the beamforming performance of phased-array and MIMO radars employing two-dimensional arrays of antennas, a hybrid two-dimensional Phased-MIMO radar with fully overlapped subarrays is proposed. The work considers both adaptive (convex optimization, CAPON beamformer) and non-adaptive (conventional) beamforming techniques. The transmit, receive and overall beampatterns of the Phased-MIMO model are compared with the respective beampatterns of the phased-array and the MIMO schemes, proving that the hybrid model provides superior capabilities in beamforming. By incorporating game theoretic techniques in the radar field, various vulnerabilities and problems can be investigated. Hence, a game theoretic power allocation scheme is proposed and a Nash equilibrium analysis for a multistatic MIMO network is performed. A network of radars is considered, organized into multiple clusters, whose primary objective is to minimize their transmission power, while satisfying a certain detection criterion. Since no communication between the clusters is assumed, non-cooperative game theoretic techniques and convex optimization methods are utilized to tackle the power adaptation problem. During the proof of the existence and the uniqueness of the solution, which is also presented, important contributions on the SINR performance and the transmission power of the radars have been derived. Game theory can also been applied to mitigate jammer interference in a radar network. Hence, a competitive power allocation problem for a MIMO radar system in the presence of multiple jammers is investigated. The main objective of the radar network is to minimize the total power emitted by the radars while achieving a specific detection criterion for each of the targets-jammers, while the intelligent jammers have the ability to observe the radar transmission power and consequently decide its jamming power to maximize the interference to the radar system. In this context, convex optimization methods, noncooperative game theoretic techniques and hypothesis testing are incorporated to identify the jammers and to determine the optimal power allocation. Furthermore, a proof of the existence and the uniqueness of the solution is presented. Apart from resource allocation applications, game theory can also address distributed beamforming problems. More specifically, a distributed beamforming and power allocation technique for a radar system in the presence of multiple targets is considered. The primary goal of each radar is to minimize its transmission power while attaining an optimal beamforming strategy and satisfying a certain detection criterion for each of the targets. Initially, a strategic noncooperative game (SNG) is used, where there is no communication between the various radars of the system. Subsequently, a more coordinated game theoretic approach incorporating a pricing mechanism is adopted. Furthermore, a Stackelberg game is formulated by adding a surveillance radar to the system model, which will play the role of the leader, and thus the remaining radars will be the followers. For each one of these games, a proof of the existence and uniqueness of the solution is presented. In the aforementioned game theoretic applications, the radars are considered to know the exact radar cross section (RCS) parameters of the targets and thus the exact channel gains of all players, which may not be feasible in a real system. Therefore, in the last part of this thesis, uncertainty regarding the channel gains among the radars and the targets is introduced, which originates from the RCS fluctuations of the targets. Bayesian game theory provides a framework to address such problems of incomplete information. Hence, a Bayesian game is proposed, where each radar egotistically maximizes its SINR, under a predefined power constraint

    Sparse Array Beamformer Design via ADMM

    Full text link
    In this paper, we devise a sparse array design algorithm for adaptive beamforming. Our strategy is based on finding a sparse beamformer weight to maximize the output signal-to-interference-plus-noise ratio (SINR). The proposed method utilizes the alternating direction method of multipliers (ADMM), and admits closed-form solutions at each ADMM iteration. The algorithm convergence properties are analyzed by showing the monotonicity and boundedness of the augmented Lagrangian function. In addition, we prove that the proposed algorithm converges to the set of Karush-Kuhn-Tucker stationary points. Numerical results exhibit its excellent performance, which is comparable to that of the exhaustive search approach, slightly better than those of the state-of-the-art solvers, including the semidefinite relaxation (SDR), its variant (SDR-V), and the successive convex approximation (SCA) approaches, and significantly outperforms several other sparse array design strategies, in terms of output SINR. Moreover, the proposed ADMM algorithm outperforms the SDR, SDR-V, and SCA methods, in terms of computational complexity.Comment: Accepted by IEEE Transactions on Signal Processin

    AFIT UAV Swarm Mission Planning and Simulation System

    Get PDF
    The purpose of this research is to design and implement a comprehensive mission planning system for swarms of autonomous aerial vehicles. The system integrates several problem domains including path planning, vehicle routing, and swarm behavior. The developed system consists of a parallel, multi-objective evolutionary algorithm-based path planner, a genetic algorithm-based vehicle router, and a parallel UAV swarm simulator. Each of the system\u27s three primary components are developed on AFIT\u27s Beowulf parallel computer clusters. Novel aspects of this research include: integrating terrain following technology into a swarm model as a means of detection avoidance, combining practical problems of path planning and routing into a comprehensive mission planning strategy, and the development of a swarm behavior model with path following capabilities

    Integrated Sensing and Communications: Towards Dual-functional Wireless Networks for 6G and Beyond

    Get PDF
    As the standardization of 5G solidifies, researchers are speculating what 6G will be. The integration of sensing functionality is emerging as a key feature of the 6G Radio Access Network (RAN), allowing for the exploitation of dense cell infrastructures to construct a perceptive network. In this IEEE Journal on Selected Areas in Commmunications (JSAC) Special Issue overview, we provide a comprehensive review on the background, range of key applications and state-of-the-art approaches of Integrated Sensing and Communications (ISAC). We commence by discussing the interplay between sensing and communications (S&C) from a historical point of view, and then consider the multiple facets of ISAC and the resulting performance gains. By introducing both ongoing and potential use cases, we shed light on the industrial progress and standardization activities related to ISAC. We analyze a number of performance tradeoffs between S&C, spanning from information theoretical limits to physical layer performance tradeoffs, and the cross-layer design tradeoffs. Next, we discuss the signal processing aspects of ISAC, namely ISAC waveform design and receive signal processing. As a step further, we provide our vision on the deeper integration between S&C within the framework of perceptive networks, where the two functionalities are expected to mutually assist each other, i.e., via communication-assisted sensing and sensing-assisted communications. Finally, we identify the potential integration of ISAC with other emerging communication technologies, and their positive impacts on the future of wireless networks

    Energy-Efficient Hybrid Beamforming for Multi-Layer RIS-Assisted Secure Integrated Terrestrial-Aerial Networks

    Get PDF
    The integration of aerial platforms to provide ubiquitous coverage and connectivity for densely deployed terrestrial networks is expected to be a reality in the emerging sixth-generation networks. Energy-effificient and secure transmission designs are two important components for integrated terrestrial-aerial networks (ITAN). Inlight of the potential of reconfigurable intelligent surface (RIS) for significantly reducing the system power consumption and boosting information security, this paper proposes a multi-layer RIS-assisted secure ITAN architecture to defend against simultaneous jamming and eavesdropping attacks, and investigates energy-efficient hybrid beamforming for it. Specifically, with the availability of imperfect angular channel state information (CSI), we propose a block coordinate descent (BCD) framework for the joint optimization of the user’s received decoder, the terrestrial and aerial digital precoder, and the multi-layer RIS analog precoder to maximize the system energy efficiency (EE) performance. For the design of the received decoder, a heuristic beamforming scheme is proposed to convert the worst-case design problem into a min-max one and facilitate the developing a closed-form solution. For the design of the digital precoder, we propose an iterative sequential convex approximation approach via capitalizing the auxiliary variables and first-order Taylor series expansion. Finally, a monotonic vertex-update algorithm with a penalty convex-concave procedure (P-CCP) is proposed to obtain the analog precoder with satisfactory performance. Numerical results show the superiority and effectiveness of the proposed optimization framework and architecture over various benchmark schemes

    Explicit Building Block Multiobjective Evolutionary Computation: Methods and Applications

    Get PDF
    This dissertation presents principles, techniques, and performance of evolutionary computation optimization methods. Concentration is on concepts, design formulation, and prescription for multiobjective problem solving and explicit building block (BB) multiobjective evolutionary algorithms (MOEAs). Current state-of-the-art explicit BB MOEAs are addressed in the innovative design, execution, and testing of a new multiobjective explicit BB MOEA. Evolutionary computation concepts examined are algorithm convergence, population diversity and sizing, genotype and phenotype partitioning, archiving, BB concepts, parallel evolutionary algorithm (EA) models, robustness, visualization of evolutionary process, and performance in terms of effectiveness and efficiency. The main result of this research is the development of a more robust algorithm where MOEA concepts are implicitly employed. Testing shows that the new MOEA can be more effective and efficient than previous state-of-the-art explicit BB MOEAs for selected test suite multiobjective optimization problems (MOPs) and U.S. Air Force applications. Other contributions include the extension of explicit BB definitions to clarify the meanings for good single and multiobjective BBs. A new visualization technique is developed for viewing genotype, phenotype, and the evolutionary process in finding Pareto front vectors while tracking the size of the BBs. The visualization technique is the result of a BB tracing mechanism integrated into the new MOEA that enables one to determine the required BB sizes and assign an approximation epistasis level for solving a particular problem. The culmination of this research is explicit BB state-of-the-art MOEA technology based on the MOEA design, BB classifier type assessment, solution evolution visualization, and insight into MOEA test metric validation and usage as applied to test suite, deception, bioinformatics, unmanned vehicle flight pattern, and digital symbol set design MOPs
    corecore