328 research outputs found

    Parameterized Hardness of Art Gallery Problems

    Get PDF
    Given a simple polygon P on n vertices, two points x,y in P are said to be visible to each other if the line segment between x and y is contained in P. The Point Guard Art Gallery problem asks for a minimum set S such that every point in P is visible from a point in S. The Vertex Guard Art Gallery problem asks for such a set S subset of the vertices of P. A point in the set S is referred to as a guard. For both variants, we rule out a f(k)*n^{o(k/log k)} algorithm, for any computable function f, where k := |S| is the number of guards, unless the Exponential Time Hypothesis fails. These lower bounds almost match the n^{O(k)} algorithms that exist for both problems

    The Parameterized Complexity of Guarding Almost Convex Polygons

    Get PDF
    The Art Gallery problem is a fundamental visibility problem in Computational Geometry. The input consists of a simple polygon P, (possibly infinite) sets G and C of points within P, and an integer k; the task is to decide if at most k guards can be placed on points in G so that every point in C is visible to at least one guard. In the classic formulation of Art Gallery, G and C consist of all the points within P. Other well-known variants restrict G and C to consist either of all the points on the boundary of P or of all the vertices of P. Recently, three new important discoveries were made: the above mentioned variants of Art Gallery are all W[1]-hard with respect to k [Bonnet and Miltzow, ESA'16], the classic variant has an O(log k)-approximation algorithm [Bonnet and Miltzow, SoCG'17], and it may require irrational guards [Abrahamsen et al., SoCG'17]. Building upon the third result, the classic variant and the case where G consists only of all the points on the boundary of P were both shown to be ∃ℝ-complete [Abrahamsen et al., STOC'18]. Even when both G and C consist only of all the points on the boundary of P, the problem is not known to be in NP. Given the first discovery, the following question was posed by Giannopoulos [Lorentz Center Workshop, 2016]: Is Art Gallery FPT with respect to r, the number of reflex vertices? In light of the developments above, we focus on the variant where G and C consist of all the vertices of P, called Vertex-Vertex Art Gallery. Apart from being a variant of Art Gallery, this case can also be viewed as the classic Dominating Set problem in the visibility graph of a polygon. In this article, we show that the answer to the question by Giannopoulos is positive: Vertex-Vertex Art Gallery is solvable in time r^O(r²)n^O(1). Furthermore, our approach extends to assert that Vertex-Boundary Art Gallery and Boundary-Vertex Art Gallery are both FPT as well. To this end, we utilize structural properties of "almost convex polygons" to present a two-stage reduction from Vertex-Vertex Art Gallery to a new constraint satisfaction problem (whose solution is also provided in this paper) where constraints have arity 2 and involve monotone functions.publishedVersio

    Exact Algorithms for Terrain Guarding

    Get PDF
    Given a 1.5-dimensional terrain T, also known as an x-monotone polygonal chain, the Terrain Guarding problem seeks a set of points of minimum size on T that guards all of the points on T. Here, we say that a point p guards a point q if no point of the line segment pq is strictly below T. The Terrain Guarding problem has been extensively studied for over 20 years. In 2005 it was already established that this problem admits a constant-factor approximation algorithm [SODA 2005]. However, only in 2010 King and Krohn [SODA 2010] finally showed that Terrain Guarding is NP-hard. In spite of the remarkable developments in approximation algorithms for Terrain Guarding, next to nothing is known about its parameterized complexity. In particular, the most intriguing open questions in this direction ask whether it admits a subexponential-time algorithm and whether it is fixed-parameter tractable. In this paper, we answer the first question affirmatively by developing an n^O(sqrt{k})-time algorithm for both Discrete Terrain Guarding and Continuous Terrain Guarding. We also make non-trivial progress with respect to the second question: we show that Discrete Orthogonal Terrain Guarding, a well-studied special case of Terrain Guarding, is fixed-parameter tractable

    Orthogonal terrain guarding is NP-complete

    Get PDF

    Stabbing line segments with disks: complexity and approximation algorithms

    Full text link
    Computational complexity and approximation algorithms are reported for a problem of stabbing a set of straight line segments with the least cardinality set of disks of fixed radii r>0r>0 where the set of segments forms a straight line drawing G=(V,E)G=(V,E) of a planar graph without edge crossings. Close geometric problems arise in network security applications. We give strong NP-hardness of the problem for edge sets of Delaunay triangulations, Gabriel graphs and other subgraphs (which are often used in network design) for r[dmin,ηdmax]r\in [d_{\min},\eta d_{\max}] and some constant η\eta where dmaxd_{\max} and dmind_{\min} are Euclidean lengths of the longest and shortest graph edges respectively. Fast O(ElogE)O(|E|\log|E|)-time O(1)O(1)-approximation algorithm is proposed within the class of straight line drawings of planar graphs for which the inequality rηdmaxr\geq \eta d_{\max} holds uniformly for some constant η>0,\eta>0, i.e. when lengths of edges of GG are uniformly bounded from above by some linear function of r.r.Comment: 12 pages, 1 appendix, 15 bibliography items, 6th International Conference on Analysis of Images, Social Networks and Texts (AIST-2017

    A Practical Algorithm with Performance Guarantees for the Art Gallery Problem

    Get PDF
    Given a closed simple polygon P, we say two points p,q see each other if the segment seg(p,q) is fully contained in P. The art gallery problem seeks a minimum size set G ? P of guards that sees P completely. The only currently correct algorithm to solve the art gallery problem exactly uses algebraic methods. As the art gallery problem is ? ?-complete, it seems unlikely to avoid algebraic methods, for any exact algorithm, without additional assumptions. In this paper, we introduce the notion of vision-stability. In order to describe vision-stability consider an enhanced guard that can see "around the corner" by an angle of ? or a diminished guard whose vision is by an angle of ? "blocked" by reflex vertices. A polygon P has vision-stability ? if the optimal number of enhanced guards to guard P is the same as the optimal number of diminished guards to guard P. We will argue that most relevant polygons are vision-stable. We describe a one-shot vision-stable algorithm that computes an optimal guard set for vision-stable polygons using polynomial time and solving one integer program. It guarantees to find the optimal solution for every vision-stable polygon. We implemented an iterative vision-stable algorithm and show its practical performance is slower, but comparable with other state-of-the-art algorithms. The practical implementation can be found at: https://github.com/simonheng/AGPIterative. Our iterative algorithm is inspired and follows closely the one-shot algorithm. It delays several steps and only computes them when deemed necessary. Given a chord c of a polygon, we denote by n(c) the number of vertices visible from c. The chord-visibility width (cw(P)) of a polygon is the maximum n(c) over all possible chords c. The set of vision-stable polygons admit an FPT algorithm when parameterized by the chord-visibility width. Furthermore, the one-shot algorithm runs in FPT time when parameterized by the number of reflex vertices
    corecore