15,354 research outputs found

    Hierarchies of Inefficient Kernelizability

    Full text link
    The framework of Bodlaender et al. (ICALP 2008) and Fortnow and Santhanam (STOC 2008) allows us to exclude the existence of polynomial kernels for a range of problems under reasonable complexity-theoretical assumptions. However, there are also some issues that are not addressed by this framework, including the existence of Turing kernels such as the "kernelization" of Leaf Out Branching(k) into a disjunction over n instances of size poly(k). Observing that Turing kernels are preserved by polynomial parametric transformations, we define a kernelization hardness hierarchy, akin to the M- and W-hierarchy of ordinary parameterized complexity, by the PPT-closure of problems that seem likely to be fundamentally hard for efficient Turing kernelization. We find that several previously considered problems are complete for our fundamental hardness class, including Min Ones d-SAT(k), Binary NDTM Halting(k), Connected Vertex Cover(k), and Clique(k log n), the clique problem parameterized by k log n

    Exact Methods for Multistage Estimation of a Binomial Proportion

    Full text link
    We first review existing sequential methods for estimating a binomial proportion. Afterward, we propose a new family of group sequential sampling schemes for estimating a binomial proportion with prescribed margin of error and confidence level. In particular, we establish the uniform controllability of coverage probability and the asymptotic optimality for such a family of sampling schemes. Our theoretical results establish the possibility that the parameters of this family of sampling schemes can be determined so that the prescribed level of confidence is guaranteed with little waste of samples. Analytic bounds for the cumulative distribution functions and expectations of sample numbers are derived. Moreover, we discuss the inherent connection of various sampling schemes. Numerical issues are addressed for improving the accuracy and efficiency of computation. Computational experiments are conducted for comparing sampling schemes. Illustrative examples are given for applications in clinical trials.Comment: 38 pages, 9 figure

    A practical fpt algorithm for Flow Decomposition and transcript assembly

    Full text link
    The Flow Decomposition problem, which asks for the smallest set of weighted paths that "covers" a flow on a DAG, has recently been used as an important computational step in transcript assembly. We prove the problem is in FPT when parameterized by the number of paths by giving a practical linear fpt algorithm. Further, we implement and engineer a Flow Decomposition solver based on this algorithm, and evaluate its performance on RNA-sequence data. Crucially, our solver finds exact solutions while achieving runtimes competitive with a state-of-the-art heuristic. Finally, we contextualize our design choices with two hardness results related to preprocessing and weight recovery. Specifically, kk-Flow Decomposition does not admit polynomial kernels under standard complexity assumptions, and the related problem of assigning (known) weights to a given set of paths is NP-hard.Comment: Introduces software package Toboggan: Version 1.0. http://dx.doi.org/10.5281/zenodo.82163

    Parameterized Algorithmics for Computational Social Choice: Nine Research Challenges

    Full text link
    Computational Social Choice is an interdisciplinary research area involving Economics, Political Science, and Social Science on the one side, and Mathematics and Computer Science (including Artificial Intelligence and Multiagent Systems) on the other side. Typical computational problems studied in this field include the vulnerability of voting procedures against attacks, or preference aggregation in multi-agent systems. Parameterized Algorithmics is a subfield of Theoretical Computer Science seeking to exploit meaningful problem-specific parameters in order to identify tractable special cases of in general computationally hard problems. In this paper, we propose nine of our favorite research challenges concerning the parameterized complexity of problems appearing in this context

    Counting Answers to Existential Positive Queries: A Complexity Classification

    Full text link
    Existential positive formulas form a fragment of first-order logic that includes and is semantically equivalent to unions of conjunctive queries, one of the most important and well-studied classes of queries in database theory. We consider the complexity of counting the number of answers to existential positive formulas on finite structures and give a trichotomy theorem on query classes, in the setting of bounded arity. This theorem generalizes and unifies several known results on the complexity of conjunctive queries and unions of conjunctive queries.Comment: arXiv admin note: substantial text overlap with arXiv:1501.0719
    • …
    corecore