17,251 research outputs found

    Parameterized Approximation Schemes using Graph Widths

    Full text link
    Combining the techniques of approximation algorithms and parameterized complexity has long been considered a promising research area, but relatively few results are currently known. In this paper we study the parameterized approximability of a number of problems which are known to be hard to solve exactly when parameterized by treewidth or clique-width. Our main contribution is to present a natural randomized rounding technique that extends well-known ideas and can be used for both of these widths. Applying this very generic technique we obtain approximation schemes for a number of problems, evading both polynomial-time inapproximability and parameterized intractability bounds

    A Linear Time Parameterized Algorithm for Node Unique Label Cover

    Get PDF
    The optimization version of the Unique Label Cover problem is at the heart of the Unique Games Conjecture which has played an important role in the proof of several tight inapproximability results. In recent years, this problem has been also studied extensively from the point of view of parameterized complexity. Cygan et al. [FOCS 2012] proved that this problem is fixed-parameter tractable (FPT) and Wahlstr\"om [SODA 2014] gave an FPT algorithm with an improved parameter dependence. Subsequently, Iwata, Wahlstr\"om and Yoshida [2014] proved that the edge version of Unique Label Cover can be solved in linear FPT-time. That is, there is an FPT algorithm whose dependence on the input-size is linear. However, such an algorithm for the node version of the problem was left as an open problem. In this paper, we resolve this question by presenting the first linear-time FPT algorithm for Node Unique Label Cover

    Efficient Parameterized Algorithms for Computing All-Pairs Shortest Paths

    Get PDF
    Computing all-pairs shortest paths is a fundamental and much-studied problem with many applications. Unfortunately, despite intense study, there are still no significantly faster algorithms for it than the O(n3)\mathcal{O}(n^3) time algorithm due to Floyd and Warshall (1962). Somewhat faster algorithms exist for the vertex-weighted version if fast matrix multiplication may be used. Yuster (SODA 2009) gave an algorithm running in time O(n2.842)\mathcal{O}(n^{2.842}), but no combinatorial, truly subcubic algorithm is known. Motivated by the recent framework of efficient parameterized algorithms (or "FPT in P"), we investigate the influence of the graph parameters clique-width (cwcw) and modular-width (mwmw) on the running times of algorithms for solving All-Pairs Shortest Paths. We obtain efficient (and combinatorial) parameterized algorithms on non-negative vertex-weighted graphs of times O(cw2n2)\mathcal{O}(cw^2n^2), resp. O(mw2n+n2)\mathcal{O}(mw^2n + n^2). If fast matrix multiplication is allowed then the latter can be improved to O(mw1.842n+n2)\mathcal{O}(mw^{1.842}n + n^2) using the algorithm of Yuster as a black box. The algorithm relative to modular-width is adaptive, meaning that the running time matches the best unparameterized algorithm for parameter value mwmw equal to nn, and they outperform them already for mwO(n1ε)mw \in \mathcal{O}(n^{1 - \varepsilon}) for any ε>0\varepsilon > 0

    Fast Dynamic Graph Algorithms for Parameterized Problems

    Full text link
    Fully dynamic graph is a data structure that (1) supports edge insertions and deletions and (2) answers problem specific queries. The time complexity of (1) and (2) are referred to as the update time and the query time respectively. There are many researches on dynamic graphs whose update time and query time are o(G)o(|G|), that is, sublinear in the graph size. However, almost all such researches are for problems in P. In this paper, we investigate dynamic graphs for NP-hard problems exploiting the notion of fixed parameter tractability (FPT). We give dynamic graphs for Vertex Cover and Cluster Vertex Deletion parameterized by the solution size kk. These dynamic graphs achieve almost the best possible update time O(poly(k)logn)O(\mathrm{poly}(k)\log n) and the query time O(f(poly(k),k))O(f(\mathrm{poly}(k),k)), where f(n,k)f(n,k) is the time complexity of any static graph algorithm for the problems. We obtain these results by dynamically maintaining an approximate solution which can be used to construct a small problem kernel. Exploiting the dynamic graph for Cluster Vertex Deletion, as a corollary, we obtain a quasilinear-time (polynomial) kernelization algorithm for Cluster Vertex Deletion. Until now, only quadratic time kernelization algorithms are known for this problem. We also give a dynamic graph for Chromatic Number parameterized by the solution size of Cluster Vertex Deletion, and a dynamic graph for bounded-degree Feedback Vertex Set parameterized by the solution size. Assuming the parameter is a constant, each dynamic graph can be updated in O(logn)O(\log n) time and can compute a solution in O(1)O(1) time. These results are obtained by another approach.Comment: SWAT 2014 to appea

    Lossy Kernelization

    Get PDF
    In this paper we propose a new framework for analyzing the performance of preprocessing algorithms. Our framework builds on the notion of kernelization from parameterized complexity. However, as opposed to the original notion of kernelization, our definitions combine well with approximation algorithms and heuristics. The key new definition is that of a polynomial size α\alpha-approximate kernel. Loosely speaking, a polynomial size α\alpha-approximate kernel is a polynomial time pre-processing algorithm that takes as input an instance (I,k)(I,k) to a parameterized problem, and outputs another instance (I,k)(I',k') to the same problem, such that I+kkO(1)|I'|+k' \leq k^{O(1)}. Additionally, for every c1c \geq 1, a cc-approximate solution ss' to the pre-processed instance (I,k)(I',k') can be turned in polynomial time into a (cα)(c \cdot \alpha)-approximate solution ss to the original instance (I,k)(I,k). Our main technical contribution are α\alpha-approximate kernels of polynomial size for three problems, namely Connected Vertex Cover, Disjoint Cycle Packing and Disjoint Factors. These problems are known not to admit any polynomial size kernels unless NPcoNP/polyNP \subseteq coNP/poly. Our approximate kernels simultaneously beat both the lower bounds on the (normal) kernel size, and the hardness of approximation lower bounds for all three problems. On the negative side we prove that Longest Path parameterized by the length of the path and Set Cover parameterized by the universe size do not admit even an α\alpha-approximate kernel of polynomial size, for any α1\alpha \geq 1, unless NPcoNP/polyNP \subseteq coNP/poly. In order to prove this lower bound we need to combine in a non-trivial way the techniques used for showing kernelization lower bounds with the methods for showing hardness of approximationComment: 58 pages. Version 2 contain new results: PSAKS for Cycle Packing and approximate kernel lower bounds for Set Cover and Hitting Set parameterized by universe siz
    corecore