649 research outputs found

    Design of Cab Suspensions and Semi-Active Seat Damping Control Strategies for Tractor Semi-Trailers

    Get PDF
    This thesis uses a high fidelity vertical plane ride model of the tractor semi-trailer to study the effect of different cab design configurations and semi-active seat damper control strategies on the driver’s ride comfort. The secondary suspensions of a tractor have been an area of particular interest because of the considerable ride comfort improvements they provide. A gap exists in the current engineering domain of an easily configurable high fidelity low computational cost simulation tool to analyze the ride of a tractor semi-trailer. A 15 degree of freedom model of the tractor semi-trailer was used to develop a simulation tool in the Matlab/Simulink environment. The simulation tool developed was verified against TruckSim. The contributions of the different modes of vibration to the ride comfort were analyzed. It is shown in this work that the ride at the driver’s seat can be significantly improved by relocating the cab mounts near the nodes of the 1st mode of bending of the tractor frame and by employing a full cab suspension. The developed simulation tool was used to quantify the improvements in the driver ride comfort. To develop seat isolation systems, the truck seat was modeled as a base excited 1 d.o.f. system. It is shown in this work that two optimal solutions exist depending on the spatial characteristics of the base excitation. One of the optimal solutions can be physically realized in the form of a passive spring and a passive damper in parallel. The other optimal solution can be approximated by a passive spring and a continuously variable damper in parallel. A fuzzy logic based switch mechanism was developed to switch between two realizations of the optimal solutions. A recursive least square estimator was developed to estimate the seat load and the stiffness of the spring using the same signals as the controller thus allowing universal application of the seat damper controller. The resultant controller is shown to provide the best ride comfort over various types of road surfaces. A model predictive controller for the seat damper was also developed for this work. A novel method was developed to model the bounds on the seat suspension stroke as hard constraints of the optimization problem. An efficient scheme was developed to include the frequency weighted acceleration in the performance index of the optimization problem. It is shown in this work that the MPC based seat damper controller provides better ride comfort in some specific scenarios. This work contributes towards the furthering the knowledge-base of the issues encompassing the ride quality of a tractor semi-trailer. The efficacy of the developed tractor semi-trailer ride simulation tool as a design and analysis tool is presented in this work

    Characterizing the Dynamic Response of a Chassis Frame in a Heavy-Duty Dump Vehicle based on an Improved Stochastic System Identification

    Get PDF
    This paper presents an online method for the assessment of the dynamic performance of the chassis frame in a heavy-duty dump truck based on a novel stochastic subspace identification (SSI) method. It introduces the use of an average correlation signal as the input data to conventional SSI methods in order to reduce the noisy and nonstationary contents in the vibration signals from the frame, allowing accurate modal properties to be attained for realistically assessing the dynamic behaviour of the frame when the vehicle travels on both bumped and unpaved roads under different operating conditions. The modal results show that the modal properties obtained online are significantly different from the offline ones in that the identifiable modes are less because of the integration of different vehicle systems onto the frame. Moreover, the modal shapes between 7Hz and 40Hz clearly indicate the weak section of the structure where earlier fatigues and unsafe operations may occur due to the high relative changes in the modal shapes. In addition, the loaded operations show more modes which cause high deformation on the weak section. These results have verified the performance of the proposed SSI method and provide reliable references for optimizing the construction of the frame

    Modelling and validation of off-road vehicle ride dynamics

    Get PDF
    Increasing concerns on human driver comfort/health and emerging demands on suspension systems for off-road vehicles call for an effective and efficient off-road vehicle ride dynamics model. This study devotes both analytical and experimental efforts in developing a comprehensive off-road vehicle ride dynamics model. A three-dimensional tire model is formulated to characterize tire–terrain interactions along all the three translational axes. The random roughness properties of the two parallel tracks of terrain profiles are further synthesized considering equivalent undeformable terrain and a coherence function between the two tracks. The terrain roughness model, derived from the field-measured responses of a conventional forestry skidder, was considered for the synthesis. The simulation results of the suspended and unsuspended vehicle models are derived in terms of acceleration PSD, and weighted and unweighted rms acceleration along the different axes at the driver seat location. Comparisons of the model responses with the measured data revealed that the proposed model can yield reasonably good predictions of the ride responses along the translational as well as rotational axes for both the conventional and suspended vehicles. The developed off-road vehicle ride dynamics model could serve as an effective and efficient tool for predicting vehicle ride vibrations, to seek designs of primary and secondary suspensions, and to evaluate the roles of various operating conditions

    Bibliography on heavy vehicle dynamics

    Full text link
    http://deepblue.lib.umich.edu/bitstream/2027.42/108243/1/103019.pdfDescription of 103019.pdf : Bibliograph

    Virtual Modeling and Verification of Air-Ride Truck Seat using Multibody Dynamics for Whole Body Vibration Evaluation

    Get PDF
    To aid the tuning and optimization of the truck seat design to specific trucks and road profiles during the design phase, this study presents the development and validation of a virtual seat model. This study also assess the utility of the model for whole body vibrations evaluation. The virtual dynamic seat model was developed in MSC. ADAMS/VIEW. The critical elements like the suspension mechanism, the airspring, dampers and seat cushion were modeled using tested data. To validate the performance of the virtual model, prototype tests were performed using the MTS 6-axis simulator. The modeling process was targeted to achieve a good correlation between measured and simulated data around the 5Hz frequency zone. For validation of the complete system, three test sessions were carried out. The first session collected the vibration data for validating the simulator model and the suitability of the data processing methods used. The second, collected the force-displacement data for the airspring modeling. The third test session involved the testing of the entire seat and simulator system. Validation of the virtual model is based on comparison of the tested and simulated data. The results are presented for steady-state sinusoidal inputs in the range 1,5 and 8Hz and also random inputs of 0.5-20Hz. Analysis of the whole body vibration evaluation parameters like peaks, crest factor, rms, rmq (root-mean-quad), VDV (vibration dose value) and eVDV (estimated VDV) is also included. The results obtained in this study indicate that the virtual model is able to reproduce the vibration behavior of the prototype fairly accurately in the 5Hz target region. With higher frequencies, the results shown that the model is not able to capture the nonlinearities observed in the prototype’s response. The model, however, did exhibit its ability to predict the behavioral trends in the seat response which can prove to be very beneficial for seat design. Based on the level of agreement between the tested and simulated values for the whole body vibration parameters, the use of this model for whole body vibration evaluations looks promising

    Modeling, analysis and non-linear control of a novel pneumatic semi-active vibration isolator: a concept validation study

    Get PDF
    Advanced suspension systems play a crucial role in the performance of vehicles. The essential problem in designing a vibration isolator for a system comprises of controlling the relative motion between the suspended mass and the base due to stroke limitations, while attenuating the vibration transmitted to the mass from the base. These two requirements being conflicting in nature results in a compromised suspension design when purely passive isolation technologies are employed. Active vibration isolation systems which totally eliminated this compromise have cost, maintenance and reliability issues precluding them from being used in many applications. Semi-active technologies on the other hand provide feasible alternative to the active systems, but employ oil based dampers, which deteriorates the performance over a wide range of operating regime.;The thesis presents a novel semi-active pneumatic vibration isolation technology, which is capable of alleviating the drawbacks of both the contemporary active and the semi-active systems currently being researched. The pneumatic system proposed was shown to have the capability to continuously alter its natural frequency and damping characteristics (CVNFD) without needing either a hydraulic actuator or oil based variable damping device. The computational study based on the non-linear mathematical model developed showed the CVNFD behavior of the pneumatic system and the experiments conducted on the research test-rig corroborated the result.;Two non-linear control schemes in the form of Skyhook control and sliding mode control were used to synthesize controllers for the pneumatic system. A modified skyhook control was derived and implemented on the pneumatic system. The performance of this controller was shown to rival that obtained for a conventional semi-active system using the Magneto-Rhealogical (MR) damper and controlled by skyhook control. A more advanced non-linear robust control scheme called sliding mode control was used for the second controller design. The controller was synthesized using the sliding mode control theory applied to the theory of model-matching. Lyapunov stability analysis was applied and the sliding mode controller was modified to guarantee global asymptotic stability. It was demonstrated computationally as well as experimentally that by suitably choosing the several controller design-parameters, the skyhook based sliding mode controller can recover the performance lost by implementing the model independent skyhook law.;In summary, the research conducted in this thesis demonstrated the availability and feasibility of a new and novel semi-active pneumatic vibration isolation technology that can replace and/or enhance the performance of contemporary passive and semi-active systems

    Integrated modeling and analysis methodologies for architecture-level vehicle design.

    Get PDF
    In order to satisfy customer expectations, a ground vehicle must be designed to meet a broad range of performance requirements. A satisfactory vehicle design process implements a set of requirements reflecting necessary, but perhaps not sufficient conditions for assuring success in a highly competitive market. An optimal architecture-level vehicle design configuration is one of the most important of these requirements. A basic layout that is efficient and flexible permits significant reductions in the time needed to complete the product development cycle, with commensurate reductions in cost. Unfortunately, architecture-level design is the most abstract phase of the design process. The high-level concepts that characterize these designs do not lend themselves to traditional analyses normally used to characterize, assess, and optimize designs later in the development cycle. This research addresses the need for architecture-level design abstractions that can be used to support ground vehicle development. The work begins with a rigorous description of hierarchical function-based abstractions representing not the physical configuration of the elements of a vehicle, but their function within the design space. The hierarchical nature of the abstractions lends itself to object orientation - convenient for software implementation purposes - as well as description of components, assemblies, feature groupings based on non-structural interactions, and eventually, full vehicles. Unlike the traditional early-design abstractions, the completeness of our function-based hierarchical abstractions, including their interactions, allows their use as a starting point for the derivation of analysis models. The scope of the research in this dissertation includes development of meshing algorithms for abstract structural models, a rigid-body analysis engine, and a fatigue analysis module. It is expected that the results obtained in this study will move systematic design and analysis to the earliest phases of the vehicle development process, leading to more highly optimized architectures, and eventually, better ground vehicles. This work shows that architecture level abstractions in many cases are better suited for life cycle support than geometric CAD models. Finally, substituting modeling, simulation, and optimization for intuition and guesswork will do much to mitigate the risk inherent in large projects by minimizing the possibility of incorporating irrevocably compromised architecture elements into a vehicle design that no amount of detail-level reengineering can undo

    Optimal design parameters of air suspension systems for semi-trailer truck. Part 1: modeling and algorithm

    Get PDF
    The purpose of this paper is to improve the performance of air suspension systems for a semi-trailer truck in the direction of reducing the dynamic wheel load acting on road surface (Part 1: modeling and algorithm). To achieve the goal of finding the optimal design parameters for the air suspension systems, a half-vehicle dynamic model under the road-vehicle interaction with 12 degrees of freedom (d.o.f) is established for searching the optimal design parameters of vehicle suspensions using genetic algorithm (GA). Dynamic load coefficient (DLC) is considered as a target function. Two optimal conditions: optimal design of geometrical parameters of air spring suspension systems (Case 1) and optimal design of parameters of air suspension systems (Case 2) are selected in this study. The results of this paper are the basis for optimization and discussion in Part 2 as the results and discussion

    Research on the Vibration Damping Performance of a Novel Single-Side Coupling Hydro-Pneumatic Suspension

    Get PDF
    A mine dump truck is exposed to heavy load and harsh working environment. When the truck passes over the road bumps, it will cause the body to tilt and the tires to "jump off the ground" (JOTG), which will affect the stability and safety of the truck, and will cause impact damage to the body and suspension system. To avoid this situation, a kind of Novel Single-side Coupling Hydro-pneumatic Suspension (NSCHs) is presented. NSCHs consists of two cylinders in parallel, which are connected to the accumulator by rubber pipes and mounted on the same side of the dump truck. Theoretical analysis and experimental research were respectively carried out under the road and loading experimental condition. The experimental results show that compared to the conventional single cylinder hydro-pneumatic suspension, under the loading experiment condition, the maximum overshoot pressure of the NSCHs was reduced by 0.4 MPa and the impact oscillation time was shortened by 4.13 s, which plays the effective role in reducing vibration and absorbing energy. Further, it is found that the two cylinders are coupled during the working process, and the NSCHs system can achieve uniform loading and displacement compensation, thus the novel dump truck can avoid the occurrence of the JOTG phenomenon
    • …
    corecore