7,932 research outputs found

    The Parallel Complexity of Coloring Games

    Get PDF
    International audienceWe wish to motivate the problem of finding decentralized lower-bounds on the complexity of computing a Nash equilibrium in graph games. While the centralized computation of an equilibrium in polynomial time is generally perceived as a positive result, this does not reflect well the reality of some applications where the game serves to implement distributed resource allocation algorithms, or to model the social choices of users with limited memory and computing power. As a case study, we investigate on the parallel complexity of a game-theoretic variation of graph coloring. These " coloring games " were shown to capture key properties of the more general welfare games and Hedonic games. On the positive side, it can be computed a Nash equilibrium in polynomial-time for any such game with a local search algorithm. However, the algorithm is time-consuming and it requires polynomial space. The latter questions the use of coloring games in the modeling of information-propagation in social networks. We prove that the problem of computing a Nash equilibrium in a given coloring game is PTIME-hard, and so, it is unlikely that one can be computed with an efficient distributed algorithm. The latter brings more insights on the complexity of these games

    Approximating Cumulative Pebbling Cost Is Unique Games Hard

    Get PDF
    The cumulative pebbling complexity of a directed acyclic graph GG is defined as cc(G)=minPiPi\mathsf{cc}(G) = \min_P \sum_i |P_i|, where the minimum is taken over all legal (parallel) black pebblings of GG and Pi|P_i| denotes the number of pebbles on the graph during round ii. Intuitively, cc(G)\mathsf{cc}(G) captures the amortized Space-Time complexity of pebbling mm copies of GG in parallel. The cumulative pebbling complexity of a graph GG is of particular interest in the field of cryptography as cc(G)\mathsf{cc}(G) is tightly related to the amortized Area-Time complexity of the Data-Independent Memory-Hard Function (iMHF) fG,Hf_{G,H} [AS15] defined using a constant indegree directed acyclic graph (DAG) GG and a random oracle H()H(\cdot). A secure iMHF should have amortized Space-Time complexity as high as possible, e.g., to deter brute-force password attacker who wants to find xx such that fG,H(x)=hf_{G,H}(x) = h. Thus, to analyze the (in)security of a candidate iMHF fG,Hf_{G,H}, it is crucial to estimate the value cc(G)\mathsf{cc}(G) but currently, upper and lower bounds for leading iMHF candidates differ by several orders of magnitude. Blocki and Zhou recently showed that it is NP\mathsf{NP}-Hard to compute cc(G)\mathsf{cc}(G), but their techniques do not even rule out an efficient (1+ε)(1+\varepsilon)-approximation algorithm for any constant ε>0\varepsilon>0. We show that for any constant c>0c > 0, it is Unique Games hard to approximate cc(G)\mathsf{cc}(G) to within a factor of cc. (See the paper for the full abstract.)Comment: 28 pages, updated figures and corrected typo
    corecore