139,183 research outputs found

    Acute stress response for self-optimizing mechatronic systems

    Get PDF
    Self-optimizing mechatronic systems react autonomously and flexibly to changing conditions. They are capable of learning and optimize their behavior throughout their life cycle. The paradigm of self-optimization is originally inspired by the behavior of biological systems. The key to the successful development of self-optimizing systems is a conceptual design process that precisely describes the desired system behavior. In the area of mechanical engineering, active principles based on physical effects such as friction or lever are widely used to concretize the construction structure and the behavior. The same approach can be found in the domain of software-engineering with software patterns such as the broker-pattern or the strategy pattern. However there is no appropriate design schema for the development of intelligent mechatronic systems covering the needs to fulfill the paradigm of self-optimization. This article proposes such a schema called Active Patterns for Self-Optimization. It is shown how a catalogue of active patterns can be derived from a set of four basic active patterns. This design approach is validated for a networked mechatronic system in a multiagent setting where the behavior is implemented according to a biologically inspired technique – the neuro-fuzzy learning method.1st IFIP International Conference on Biologically Inspired Cooperative Computing - Mechatronics and Computer ClustersRed de Universidades con Carreras en Informática (RedUNCI

    Active patterns for self-optimization : Schemes for the design of intelligent mechatronic systems

    Get PDF
    Self-optimizing mechatronic systems react autonomously and flexibly to changing conditions. They are capable of learning and optimize their behavior throughout their life cycle. The paradigm of self-optimization is originally inspired by the behavior of biological systems. The key to the successful development of self-optimizing systems is a conceptual design process that precisely describes the desired system behavior. In the area of mechanical engineering, active principles based on physical effects such as friction or lever are widely used to concretize the construction structure and the behavior. The same approach can be found in the domain of software-engineering with software patterns such as the broker-pattern or the strategy pattern. However there is no appropriate design schema for the development of intelligent mechatronic systems covering the needs to fulfill the paradigm of self-optimization. This article proposes such a schema called Active Patterns for Self-Optimization. It is shown how a catalogue of active patterns can be derived from a set of four basic active patterns. This design approach is validated for a networked mechatronic system in a multiagent setting where the behavior is implemented according to a biologically inspired technique – the neuro-fuzzy learning method.1st IFIP International Conference on Biologically Inspired Cooperative Computing - Mechatronics and Computer ClustersRed de Universidades con Carreras en Informática (RedUNCI

    A [email protected] Approach for Multi-objective Self-optimizing Software

    Get PDF
    This paper presents an approach to operate multi-objective self-optimizing software systems based on the [email protected] paradigm. In contrast to existing approaches, which are usually specific to a single or selected set of objectives (e.g., performance and/or reliability), the presented approach is generic in that it allows the software architect to model the relevant concerns of interest to self-optimization. At runtime, these models are interpreted and used to generate optimization problems. To evaluate the applicability of the approach, a scalability analysis is provided, showing the approach’s feasibility for at least two objectives

    Transcendental Thermodynamics

    Get PDF
    Thermodynamics is often viewed as a narrow, introspective discipline, trapped by its origins in the 18th and 19th centuries. By dramatic contrast, we show that the Fourth Law of Thermodynamics provides explanations and interpretations of all natural events, extending across artificial boundaries of tradition- al academic disciplines. The Fourth Law of Thermodynamics states that far-from-equilibrium systems increase entropy at the maximum rate available to them. This broadly inclusive paradigm applies to systems from molecules, to organisms, to the biosphere. The Fourth Law is the Law of Evolution. All systems that communicate with their environment exhibit self-organization and self-optimization, enabling the emergence and the evolution of life as a sustained optimization of entropy increase

    Synergistic Model of Cardiac Function with a Heart Assist Device

    Get PDF
    The breakdown of cardiac self-organization leads to heart diseases and failure, the number one cause of death worldwide. The left ventricular pressure–volume relation plays a key role in the diagnosis and treatment of heart diseases. Lumped-parameter models combined with pressure–volume loop analysis are very effective in simulating clinical scenarios with a view to treatment optimization and outcome prediction. Unfortunately, often invoked in this analysis is the traditional, time-varying elastance concept, in which the ratio of the ventricular pressure to its volume is prescribed by a periodic function of time, instead of being calculated consistently according to the change in feedback mechanisms (e.g., the lack or breakdown of self-organization) in heart diseases. Therefore, the application of the time-varying elastance for the analysis of left ventricular assist device (LVAD)–heart interactions has been questioned. We propose a paradigm shift from the time-varying elastance concept to a synergistic model of cardiac function by integrating the mechanical, electric, and chemical activity on microscale sarcomere and macroscale heart levels and investigating the effect of an axial rotary pump on a failing heart. We show that our synergistic model works better than the time-varying elastance model in reproducing LVAD–heart interactions with sufficient accuracy to describe the left ventricular pressure–volume relation
    • …
    corecore