239,641 research outputs found

    Lynx: A Programmatic SAT Solver for the RNA-folding Problem

    Get PDF
    15th International Conference, Trento, Italy, June 17-20, 2012. ProceedingsThis paper introduces Lynx, an incremental programmatic SAT solver that allows non-expert users to introduce domain-specific code into modern conflict-driven clause-learning (CDCL) SAT solvers, thus enabling users to guide the behavior of the solver. The key idea of Lynx is a callback interface that enables non-expert users to specialize the SAT solver to a class of Boolean instances. The user writes specialized code for a class of Boolean formulas, which is periodically called by Lynx’s search routine in its inner loop through the callback interface. The user-provided code is allowed to examine partial solutions generated by the solver during its search, and to respond by adding CNF clauses back to the solver dynamically and incrementally. Thus, the user-provided code can specialize and influence the solver’s search in a highly targeted fashion. While the power of incremental SAT solvers has been amply demonstrated in the SAT literature and in the context of DPLL(T), it has not been previously made available as a programmatic API that is easy to use for non-expert users. Lynx’s callback interface is a simple yet very effective strategy that addresses this need. We demonstrate the benefits of Lynx through a case-study from computational biology, namely, the RNA secondary structure prediction problem. The constraints that make up this problem fall into two categories: structural constraints, which describe properties of the biological structure of the solution, and energetic constraints, which encode quantitative requirements that the solution must satisfy. We show that by introducing structural constraints on-demand through user provided code we can achieve, in comparison with standard SAT approaches, upto 30x reduction in memory usage and upto 100x reduction in time

    Developing downloadable TUIs for online pedagogic activities

    No full text
    The Web has changed how we interact with the World’s information and knowledge. As a result there have been several changes to the education sector, especially in online distance learning. Nevertheless, most of the e-Learning activities struggle to break the GUI paradigm. The HCI community has focused on the use of Tangible User Interfaces (TUI) for pedagogic purposes thus producing some evidence of the potential that embodied cognition might bring to constructivist learning. New education movements such as the Edupunk movement argue for an empowerment of independent learners, following the constructivist perspective where learners have to have a more active role by experimenting and discovering concepts on their own. However, we think that accessing TUI systems via Web can lead to pedagogic activities that break the GUI paradigm in education on the Web. This paper presents a case study: three prototypes of TUIs for online learning and exploration were developed and tested, investigating the usability and engagement provided by this kind of interactive tools. <br/

    Converting Your Thoughts to Texts: Enabling Brain Typing via Deep Feature Learning of EEG Signals

    Full text link
    An electroencephalography (EEG) based Brain Computer Interface (BCI) enables people to communicate with the outside world by interpreting the EEG signals of their brains to interact with devices such as wheelchairs and intelligent robots. More specifically, motor imagery EEG (MI-EEG), which reflects a subjects active intent, is attracting increasing attention for a variety of BCI applications. Accurate classification of MI-EEG signals while essential for effective operation of BCI systems, is challenging due to the significant noise inherent in the signals and the lack of informative correlation between the signals and brain activities. In this paper, we propose a novel deep neural network based learning framework that affords perceptive insights into the relationship between the MI-EEG data and brain activities. We design a joint convolutional recurrent neural network that simultaneously learns robust high-level feature presentations through low-dimensional dense embeddings from raw MI-EEG signals. We also employ an Autoencoder layer to eliminate various artifacts such as background activities. The proposed approach has been evaluated extensively on a large- scale public MI-EEG dataset and a limited but easy-to-deploy dataset collected in our lab. The results show that our approach outperforms a series of baselines and the competitive state-of-the- art methods, yielding a classification accuracy of 95.53%. The applicability of our proposed approach is further demonstrated with a practical BCI system for typing.Comment: 10 page
    • …
    corecore