11,710 research outputs found

    Detection of variable frequency signals using a fast chirp transform

    Get PDF
    The detection of signals with varying frequency is important in many areas of physics and astrophysics. The current work was motivated by a desire to detect gravitational waves from the binary inspiral of neutron stars and black holes, a topic of significant interest for the new generation of interferometric gravitational wave detectors such as LIGO. However, this work has significant generality beyond gravitational wave signal detection. We define a Fast Chirp Transform (FCT) analogous to the Fast Fourier Transform (FFT). Use of the FCT provides a simple and powerful formalism for detection of signals with variable frequency just as Fourier transform techniques provide a formalism for the detection of signals of constant frequency. In particular, use of the FCT can alleviate the requirement of generating complicated families of filter functions typically required in the conventional matched filtering process. We briefly discuss the application of the FCT to several signal detection problems of current interest

    Dagstuhl Reports : Volume 1, Issue 2, February 2011

    Get PDF
    Online Privacy: Towards Informational Self-Determination on the Internet (Dagstuhl Perspectives Workshop 11061) : Simone Fischer-Hübner, Chris Hoofnagle, Kai Rannenberg, Michael Waidner, Ioannis Krontiris and Michael Marhöfer Self-Repairing Programs (Dagstuhl Seminar 11062) : Mauro Pezzé, Martin C. Rinard, Westley Weimer and Andreas Zeller Theory and Applications of Graph Searching Problems (Dagstuhl Seminar 11071) : Fedor V. Fomin, Pierre Fraigniaud, Stephan Kreutzer and Dimitrios M. Thilikos Combinatorial and Algorithmic Aspects of Sequence Processing (Dagstuhl Seminar 11081) : Maxime Crochemore, Lila Kari, Mehryar Mohri and Dirk Nowotka Packing and Scheduling Algorithms for Information and Communication Services (Dagstuhl Seminar 11091) Klaus Jansen, Claire Mathieu, Hadas Shachnai and Neal E. Youn

    Polynomial Kernels for Weighted Problems

    Full text link
    Kernelization is a formalization of efficient preprocessing for NP-hard problems using the framework of parameterized complexity. Among open problems in kernelization it has been asked many times whether there are deterministic polynomial kernelizations for Subset Sum and Knapsack when parameterized by the number nn of items. We answer both questions affirmatively by using an algorithm for compressing numbers due to Frank and Tardos (Combinatorica 1987). This result had been first used by Marx and V\'egh (ICALP 2013) in the context of kernelization. We further illustrate its applicability by giving polynomial kernels also for weighted versions of several well-studied parameterized problems. Furthermore, when parameterized by the different item sizes we obtain a polynomial kernelization for Subset Sum and an exponential kernelization for Knapsack. Finally, we also obtain kernelization results for polynomial integer programs

    Packing a Knapsack of Unknown Capacity

    Get PDF
    We study the problem of packing a knapsack without knowing its capacity. Whenever we attempt to pack an item that does not fit, the item is discarded; if the item fits, we have to include it in the packing. We show that there is always a policy that packs a value within factor 2 of the optimum packing, irrespective of the actual capacity. If all items have unit density, we achieve a factor equal to the golden ratio. Both factors are shown to be best possible. In fact, we obtain the above factors using packing policies that are universal in the sense that they fix a particular order of the items and try to pack the items in this order, independent of the observations made while packing. We give efficient algorithms computing these policies. On the other hand, we show that, for any alpha>1, the problem of deciding whether a given universal policy achieves a factor of alpha is coNP-complete. If alpha is part of the input, the same problem is shown to be coNP-complete for items with unit densities. Finally, we show that it is coNP-hard to decide, for given alpha, whether a set of items admits a universal policy with factor alpha, even if all items have unit densities

    Packing Squares into a Disk with Optimal Worst-Case Density

    Get PDF
    We provide a tight result for a fundamental problem arising from packing squares into a circular container: The critical density of packing squares into a disk is ? = 8/(5?)? 0.509. This implies that any set of (not necessarily equal) squares of total area A ? 8/5 can always be packed into a disk with radius 1; in contrast, for any ? > 0 there are sets of squares of total area 8/5+? that cannot be packed, even if squares may be rotated. This settles the last (and arguably, most elusive) case of packing circular or square objects into a circular or square container: The critical densities for squares in a square (1/2), circles in a square (?/(3+2?2) ? 0.539) and circles in a circle (1/2) have already been established, making use of recursive subdivisions of a square container into pieces bounded by straight lines, or the ability to use recursive arguments based on similarity of objects and container; neither of these approaches can be applied when packing squares into a circular container. Our proof uses a careful manual analysis, complemented by a computer-assisted part that is based on interval arithmetic. Beyond the basic mathematical importance, our result is also useful as a blackbox lemma for the analysis of recursive packing algorithms. At the same time, our approach showcases the power of a general framework for computer-assisted proofs, based on interval arithmetic

    Hard and Easy Instances of L-Tromino Tilings

    Get PDF
    We study tilings of regions in the square lattice with L-shaped trominoes. Deciding the existence of a tiling with L-trominoes for an arbitrary region in general is NP-complete, nonetheless, we identify restrictions to the problem where it either remains NP-complete or has a polynomial time algorithm. First, we characterize the possibility of when an Aztec rectangle and an Aztec diamond has an L-tromino tiling. Then, we study tilings of arbitrary regions where only 180∘180^\circ rotations of L-trominoes are available. For this particular case we show that deciding the existence of a tiling remains NP-complete; yet, if a region does not contains certain so-called "forbidden polyominoes" as sub-regions, then there exists a polynomial time algorithm for deciding a tiling.Comment: Full extended version of LNCS 11355:82-95 (WALCOM 2019
    • …
    corecore