4,886 research outputs found

    Condor services for the Global Grid:interoperability between Condor and OGSA

    Get PDF
    In order for existing grid middleware to remain viable it is important to investigate their potentialfor integration with emerging grid standards and architectural schemes. The Open Grid ServicesArchitecture (OGSA), developed by the Globus Alliance and based on standard XML-based webservices technology, was the first attempt to identify the architectural components required tomigrate towards standardized global grid service delivery. This paper presents an investigation intothe integration of Condor, a widely adopted and sophisticated high-throughput computing softwarepackage, and OGSA; with the aim of bringing Condor in line with advances in Grid computing andprovide the Grid community with a mature suite of high-throughput computing job and resourcemanagement services. This report identifies mappings between elements of the OGSA and Condorinfrastructures, potential areas of conflict, and defines a set of complementary architectural optionsby which individual Condor services can be exposed as OGSA Grid services, in order to achieve aseamless integration of Condor resources in a standardized grid environment

    A Case for Cooperative and Incentive-Based Coupling of Distributed Clusters

    Full text link
    Research interest in Grid computing has grown significantly over the past five years. Management of distributed resources is one of the key issues in Grid computing. Central to management of resources is the effectiveness of resource allocation as it determines the overall utility of the system. The current approaches to superscheduling in a grid environment are non-coordinated since application level schedulers or brokers make scheduling decisions independently of the others in the system. Clearly, this can exacerbate the load sharing and utilization problems of distributed resources due to suboptimal schedules that are likely to occur. To overcome these limitations, we propose a mechanism for coordinated sharing of distributed clusters based on computational economy. The resulting environment, called \emph{Grid-Federation}, allows the transparent use of resources from the federation when local resources are insufficient to meet its users' requirements. The use of computational economy methodology in coordinating resource allocation not only facilitates the QoS based scheduling, but also enhances utility delivered by resources.Comment: 22 pages, extended version of the conference paper published at IEEE Cluster'05, Boston, M

    A Factory-based Approach to Support E-commerce Agent Fabrication

    Get PDF
    With the development of Internet computing and software agent technologies, agent-based e-commerce is emerging. How to create agents for e-commerce applications has become an important issue along the way to success. We propose a factory-based approach to support agent fabrication in e-commerce and elaborate a design based on the SAFER (Secure Agent Fabrication, Evolution & Roaming) framework. The details of agent fabrication, modular agent structure, agent life cycle, as well as advantages of agent fabrication are presented. Product-brokering agent is employed as a practical agent type to demonstrate our design and Java-based implementation

    A DevOps approach to integration of software components in an EU research project

    Get PDF
    We present a description of the development and deployment infrastructure being created to support the integration effort of HARNESS, an EU FP7 project. HARNESS is a multi-partner research project intended to bring the power of heterogeneous resources to the cloud. It consists of a number of different services and technologies that interact with the OpenStack cloud computing platform at various levels. Many of these components are being developed independently by different teams at different locations across Europe, and keeping the work fully integrated is a challenge. We use a combination of Vagrant based virtual machines, Docker containers, and Ansible playbooks to provide a consistent and up-to-date environment to each developer. The same playbooks used to configure local virtual machines are also used to manage a static testbed with heterogeneous compute and storage devices, and to automate ephemeral larger-scale deployments to Grid5000. Access to internal projects is managed by GitLab, and automated testing of services within Docker-based environments and integrated deployments within virtual-machines is provided by Buildbot

    Configurable Strategies for Work-stealing

    Full text link
    Work-stealing systems are typically oblivious to the nature of the tasks they are scheduling. For instance, they do not know or take into account how long a task will take to execute or how many subtasks it will spawn. Moreover, the actual task execution order is typically determined by the underlying task storage data structure, and cannot be changed. There are thus possibilities for optimizing task parallel executions by providing information on specific tasks and their preferred execution order to the scheduling system. We introduce scheduling strategies to enable applications to dynamically provide hints to the task-scheduling system on the nature of specific tasks. Scheduling strategies can be used to independently control both local task execution order as well as steal order. In contrast to conventional scheduling policies that are normally global in scope, strategies allow the scheduler to apply optimizations on individual tasks. This flexibility greatly improves composability as it allows the scheduler to apply different, specific scheduling choices for different parts of applications simultaneously. We present a number of benchmarks that highlight diverse, beneficial effects that can be achieved with scheduling strategies. Some benchmarks (branch-and-bound, single-source shortest path) show that prioritization of tasks can reduce the total amount of work compared to standard work-stealing execution order. For other benchmarks (triangle strip generation) qualitatively better results can be achieved in shorter time. Other optimizations, such as dynamic merging of tasks or stealing of half the work, instead of half the tasks, are also shown to improve performance. Composability is demonstrated by examples that combine different strategies, both within the same kernel (prefix sum) as well as when scheduling multiple kernels (prefix sum and unbalanced tree search)

    Cross-layer Resource Allocation Scheme for Multi-band High Rate UWB Systems

    Get PDF
    In this paper, we investigate the use of a cross-layer allocation mechanism for the high-rate ultra-wideband (UWB) systems. The aim of this paper is twofold. First, through the cross-layer approach that provides a new service differentiation approach to the fully distributed UWB systems, we support traffic with quality of service (QoS) guarantee in a multi-user context. Second, we exploit the effective SINR method that represents the characteristics of multiple sub-carrier SINRs in the multi-band WiMedia solution proposed for UWB systems, in order to provide the channel state information needed for the multi-user sub-band allocation. This new approach improves the system performance and optimizes the spectrum utilization with a low cost data exchange between the different users while guaranteeing the required QoS. In addition, this new approach solves the problem of the cohabitation of more than three users in the same WiMedia channel

    A Graph-Partition-Based Scheduling Policy for Heterogeneous Architectures

    Full text link
    In order to improve system performance efficiently, a number of systems choose to equip multi-core and many-core processors (such as GPUs). Due to their discrete memory these heterogeneous architectures comprise a distributed system within a computer. A data-flow programming model is attractive in this setting for its ease of expressing concurrency. Programmers only need to define task dependencies without considering how to schedule them on the hardware. However, mapping the resulting task graph onto hardware efficiently remains a challenge. In this paper, we propose a graph-partition scheduling policy for mapping data-flow workloads to heterogeneous hardware. According to our experiments, our graph-partition-based scheduling achieves comparable performance to conventional queue-base approaches.Comment: Presented at DATE Friday Workshop on Heterogeneous Architectures and Design Methods for Embedded Image Systems (HIS 2015) (arXiv:1502.07241
    corecore