156 research outputs found

    Resonance, linear syzygies, Chen groups, and the Bernstein-Gelfand-Gelfand correspondence

    Full text link
    If \A is a complex hyperplane arrangement, with complement X, we show that the Chen ranks of G=\pi_1(X) are equal to the graded Betti numbers of the linear strand in a minimal, free resolution of the cohomology ring A=H^*(X,\k), viewed as a module over the exterior algebra E on \A: \theta_k(G) = \dim_\k Tor^E_{k-1}(A,\k)_k, where \k is a field of characteristic 0, and k\ge 2. The Chen ranks conjecture asserts that, for k sufficiently large, \theta_k(G) =(k-1) \sum_{r\ge 1} h_r \binom{r+k-1}{k}, where h_r is the number of r-dimensional components of the projective resonance variety R^1(\A). Our earlier work on the resolution of A over E and the above equality yield a proof of the conjecture for graphic arrangements. Using results on the geometry of R^1(\A) and a localization argument, we establish the conjectured lower bound for the Chen ranks of an arbitrary arrangement \A. Finally, we show that there is a polynomial P(t) of degree equal to the dimension of R^1(\A), such that \theta_k(G) = P(k), for k sufficiently large.Comment: 21 pages; final versio

    Characteristic varieties of arrangements

    Full text link
    The k-th Fitting ideal of the Alexander invariant B of an arrangement A of n complex hyperplanes defines a characteristic subvariety, V_k(A), of the complex algebraic n-torus. In the combinatorially determined case where B decomposes as a direct sum of local Alexander invariants, we obtain a complete description of V_k(A). For any arrangement A, we show that the tangent cone at the identity of this variety coincides with R^1_k(A), one of the cohomology support loci of the Orlik-Solomon algebra. Using work of Arapura and Libgober, we conclude that all positive-dimensional components of V_k(A) are combinatorially determined, and that R^1_k(A) is the union of a subspace arrangement in C^n, thereby resolving a conjecture of Falk. We use these results to study the reflection arrangements associated to monomial groups.Comment: LaTeX2e, 20 pages. A reference to Libgober's recent work in math.AG/9801070 is added. Several points are clarified, a new example is include

    Chen ranks and resonance

    Full text link
    The Chen groups of a group GG are the lower central series quotients of the maximal metabelian quotient of GG. Under certain conditions, we relate the ranks of the Chen groups to the first resonance variety of GG, a jump locus for the cohomology of GG. In the case where GG is the fundamental group of the complement of a complex hyperplane arrangement, our results positively resolve Suciu's Chen ranks conjecture. We obtain explicit formulas for the Chen ranks of a number of groups of broad interest, including pure Artin groups associated to Coxeter groups, and the group of basis-conjugating automorphisms of a finitely generated free group.Comment: final version, to appear in Advances in Mathematic

    Lower central series and free resolutions of hyperplane arrangements

    Full text link
    If MM is the complement of a hyperplane arrangement, and A=H^*(M,\k) is the cohomology ring of MM over a field of characteristic 0, then the ranks, Ο•k\phi_k, of the lower central series quotients of Ο€1(M)\pi_1(M) can be computed from the Betti numbers, b_{ii}=\dim_{\k} \Tor^A_i(\k,\k)_i, of the linear strand in a (minimal) free resolution of \k over AA. We use the Cartan-Eilenberg change of rings spectral sequence to relate these numbers to the graded Betti numbers, b'_{ij}=\dim_{\k} \Tor^E_i(A,\k)_j, of a (minimal) resolution of AA over the exterior algebra EE. From this analysis, we recover a formula of Falk for Ο•3\phi_3, and obtain a new formula for Ο•4\phi_4. The exact sequence of low degree terms in the spectral sequence allows us to answer a question of Falk on graphic arrangements, and also shows that for these arrangements, the algebra AA is Koszul iff the arrangement is supersolvable. We also give combinatorial lower bounds on the Betti numbers, bi,i+1β€²b'_{i,i+1}, of the linear strand of the free resolution of AA over EE; if the lower bound is attained for i=2i = 2, then it is attained for all iβ‰₯2i \ge 2. For such arrangements, we compute the entire linear strand of the resolution, and we prove that all components of the first resonance variety of AA are local. For graphic arrangements (which do not attain the lower bound, unless they have no braid sub-arrangements), we show that bi,i+1β€²b'_{i,i+1} is determined by the number of triangles and K4K_4 subgraphs in the graph.Comment: 25 pages, to appear in Trans. Amer. Math. So
    • …
    corecore