945 research outputs found

    Optimization Alternatives for Robust Model-based Design of Synthetic Biological Circuits

    Full text link
    [EN] Synthetic biology is reaching the situation where tuning devices by hand is no longer possible due to the complexity of the biological circuits being designed. Thus, mathematical models need to be used in order, not only to predict the behavior of the designed synthetic devices; but to help on the selection of the biological parts, i.e., guidelines for the experimental implementation. However, since uncertainties are inherent to biology, the desired dynamics for the circuit usually requires a trade-off among several goals. Hence, a multi-objective optimization design (MOOD) naturally arises to get a suitable parametrization (or range) of the required kinetic parameters to build a biological device with some desired properties. Biologists have classically addressed this problem by evaluating a set of random Monte Carlo simulations with parameters between an operation range. In this paper, We propose solving the MOOD by means of dynamic programming using both a global multi-objective evolutionary algorithm (MOLA) and a local gradient-based nonlinear programming (NLP) solver. The performance of both alternatives is then checked in the design of a well-known biological circuit: a genetic incoherent feed-forward loop showing adaptive behavior. (C) 2016, IFAC (International Federation of Antomatic Control) Hosting by Elsevier Ltd. All rights reserved.The research leading to these results has received funding from the European Union (FP7/2007-2013 under grant agreement no604068), the Spanish Government (FEDER-CICYT DPI2011-524 28112-C04-01, DPI2014-55276-C5-1-R, DPI2015-70975-P) and the National Council of Scientific and Technologic Development of Brazil (BJT-304804/2014-2). Yadira Boada thanks also grant FPI/2013-3242 of the Universitat Politecnica de ValenciaBoada-Acosta, YF.; Pitarch Pérez, JL.; Vignoni, A.; Reynoso Meza, G.; Picó, J. (2016). Optimization Alternatives for Robust Model-based Design of Synthetic Biological Circuits. IFAC-PapersOnLine. 49(7):821-826. https://doi.org/10.1016/j.ifacol.2016.07.291S82182649

    Interaction-Aware Trajectory Prediction and Planning in Dense Highway Traffic using Distributed Model Predictive Control

    Full text link
    In this paper we treat optimal trajectory planning for an autonomous vehicle (AV) operating in dense traffic, where vehicles closely interact with each other. To tackle this problem, we present a novel framework that couples trajectory prediction and planning in multi-agent environments, using distributed model predictive control. A demonstration of our framework is presented in simulation, employing a trajectory planner using non-linear model predictive control. We analyze performance and convergence of our framework, subject to different prediction errors. The results indicate that the obtained locally optimal solutions are improved, compared with decoupled prediction and planning

    Mixed-integer Nonlinear Optimization: a hatchery for modern mathematics

    Get PDF
    The second MFO Oberwolfach Workshop on Mixed-Integer Nonlinear Programming (MINLP) took place between 2nd and 8th June 2019. MINLP refers to one of the hardest Mathematical Programming (MP) problem classes, involving both nonlinear functions as well as continuous and integer decision variables. MP is a formal language for describing optimization problems, and is traditionally part of Operations Research (OR), which is itself at the intersection of mathematics, computer science, engineering and econometrics. The scientific program has covered the three announced areas (hierarchies of approximation, mixed-integer nonlinear optimal control, and dealing with uncertainties) with a variety of tutorials, talks, short research announcements, and a special "open problems'' session

    Optimal Control for Automotive Powertrain Applications

    Full text link
    Optimal Control (OC) is essentially a mathematical extremal problem. The procedure consists on the definition of a criterion to minimize (or maximize), some constraints that must be fulfilled and boundary conditions or disturbances affecting to the system behavior. The OC theory supplies methods to derive a control trajectory that minimizes (or maximizes) that criterion. This dissertation addresses the application of OC to automotive control problems at the powertrain level, with emphasis on the internal combustion engine. The necessary tools are an optimization method and a mathematical representation of the powertrain. Thus, the OC theory is reviewed with a quantitative analysis of the advantages and drawbacks of the three optimization methods available in literature: dynamic programming, Pontryagin minimum principle and direct methods. Implementation algorithms for these three methods are developed and described in detail. In addition to that, an experimentally validated dynamic powertrain model is developed, comprising longitudinal vehicle dynamics, electrical motor and battery models, and a mean value engine model. OC can be utilized for three different purposes: 1. Applied control, when all boundaries can be accurately defined. The engine control is addressed with this approach assuming that a the driving cycle is known in advance, translating into a large mathematical problem. Two specific cases are studied: the management of a dual-loop EGR system, and the full control of engine actuators, namely fueling rate, SOI, EGR and VGT settings. 2. Derivation of near-optimal control rules, to be used if some disturbances are unknown. In this context, cycle-specific engine calibrations calculation, and a stochastic feedback control for power-split management in hybrid vehicles are analyzed. 3. Use of OC trajectories as a benchmark or base line to improve the system design and efficiency with an objective criterion. OC is used to optimize the heat release law of a diesel engine and to size a hybrid powertrain with a further cost analysis. OC strategies have been applied experimentally in the works related to the internal combustion engine, showing significant improvements but non-negligible difficulties, which are analyzed and discussed. The methods developed in this dissertation are general and can be extended to other criteria if appropriate models are available.El Control Óptimo (CO) es esencialmente un problema matemático de búsqueda de extremos, consistente en la definición de un criterio a minimizar (o maximizar), restricciones que deben satisfacerse y condiciones de contorno que afectan al sistema. La teoría de CO ofrece métodos para derivar una trayectoria de control que minimiza (o maximiza) ese criterio. Esta Tesis trata la aplicación del CO en automoción, y especialmente en el motor de combustión interna. Las herramientas necesarias son un método de optimización y una representación matemática de la planta motriz. Para ello, se realiza un análisis cuantitativo de las ventajas e inconvenientes de los tres métodos de optimización existentes en la literatura: programación dinámica, principio mínimo de Pontryagin y métodos directos. Se desarrollan y describen los algoritmos para implementar estos métodos así como un modelo de planta motriz, validado experimentalmente, que incluye la dinámica longitudinal del vehículo, modelos para el motor eléctrico y las baterías, y un modelo de motor de combustión de valores medios. El CO puede utilizarse para tres objetivos distintos: 1. Control aplicado, en caso de que las condiciones de contorno estén definidas. Puede aplicarse al control del motor de combustión para un ciclo de conducción dado, traduciéndose en un problema matemático de grandes dimensiones. Se estudian dos casos particulares: la gestión de un sistema de EGR de doble lazo, y el control completo del motor, en particular de las consignas de inyección, SOI, EGR y VGT. 2. Obtención de reglas de control cuasi-óptimas, aplicables en casos en los que no todas las perturbaciones se conocen. A este respecto, se analizan el cálculo de calibraciones de motor específicas para un ciclo, y la gestión energética de un vehículo híbrido mediante un control estocástico en bucle cerrado. 3. Empleo de trayectorias de CO como comparativa o referencia para tareas de diseño y mejora, ofreciendo un criterio objetivo. La ley de combustión así como el dimensionado de una planta motriz híbrida se optimizan mediante el uso de CO. Las estrategias de CO han sido aplicadas experimentalmente en los trabajos referentes al motor de combustión, poniendo de manifiesto sus ventajas sustanciales, pero también analizando dificultades y líneas de actuación para superarlas. Los métodos desarrollados en esta Tesis Doctoral son generales y aplicables a otros criterios si se dispone de los modelos adecuados.El Control Òptim (CO) és essencialment un problema matemàtic de cerca d'extrems, que consisteix en la definició d'un criteri a minimitzar (o maximitzar), restriccions que es deuen satisfer i condicions de contorn que afecten el sistema. La teoria de CO ofereix mètodes per a derivar una trajectòria de control que minimitza (o maximitza) aquest criteri. Aquesta Tesi tracta l'aplicació del CO en automoció i especialment al motor de combustió interna. Les ferramentes necessàries són un mètode d'optimització i una representació matemàtica de la planta motriu. Per a això, es realitza una anàlisi quantitatiu dels avantatges i inconvenients dels tres mètodes d'optimització existents a la literatura: programació dinàmica, principi mínim de Pontryagin i mètodes directes. Es desenvolupen i descriuen els algoritmes per a implementar aquests mètodes així com un model de planta motriu, validat experimentalment, que inclou la dinàmica longitudinal del vehicle, models per al motor elèctric i les bateries, i un model de motor de combustió de valors mitjans. El CO es pot utilitzar per a tres objectius diferents: 1. Control aplicat, en cas que les condicions de contorn estiguen definides. Es pot aplicar al control del motor de combustió per a un cicle de conducció particular, traduint-se en un problema matemàtic de grans dimensions. S'estudien dos casos particulars: la gestió d'un sistema d'EGR de doble llaç, i el control complet del motor, particularment de les consignes d'injecció, SOI, EGR i VGT. 2. Obtenció de regles de control quasi-òptimes, aplicables als casos on no totes les pertorbacions són conegudes. A aquest respecte, s'analitzen el càlcul de calibratges específics de motor per a un cicle, i la gestió energètica d'un vehicle híbrid mitjançant un control estocàstic en bucle tancat. 3. Utilització de trajectòries de CO com comparativa o referència per a tasques de disseny i millora, oferint un criteri objectiu. La llei de combustió així com el dimensionament d'una planta motriu híbrida s'optimitzen mitjançant l'ús de CO. Les estratègies de CO han sigut aplicades experimentalment als treballs referents al motor de combustió, manifestant els seus substancials avantatges, però també analitzant dificultats i línies d'actuació per superar-les. Els mètodes desenvolupats a aquesta Tesi Doctoral són generals i aplicables a uns altres criteris si es disposen dels models adequats.Reig Bernad, A. (2017). Optimal Control for Automotive Powertrain Applications [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/90624TESI

    Achieving High Renewable Energy Integration in Smart Grids with Machine Learning

    Get PDF
    The integration of high levels of renewable energy into smart grids is crucial for achieving a sustainable and efficient energy infrastructure. However, this integration presents significant technical and operational challenges due to the intermittent nature and inherent uncertainty of renewable energy sources (RES). Therefore, the energy storage system (ESS) has always been bound to renewable energy, and its charge and discharge control has become an important part of the integration. The addition of RES and ESS comes with their complex control, communication, and monitor capabilities, which also makes the grid more vulnerable to attacks, brings new challenges to the cybersecurity. A large number of works have been devoted to the optimization integration of the RES and ESS system to the traditional grid, along with combining the ESS scheduling control with the traditional Optimal Power Flow (OPF) control. Cybersecurity problem focusing on the RES integrated grid has also gradually aroused researchers’ interest. In recent years, machine learning techniques have emerged in different research field including optimizing renewable energy integration in smart grids. Reinforcement learning (RL), which trains agent to interact with the environment by making sequential decisions to maximize the expected future reward, is used as an optimization tool. This dissertation explores the application of RL algorithms and models to achieve high renewable energy integration in smart grids. The research questions focus on the effectiveness, benefits of renewable energy integration to individual consumers and electricity utilities, applying machine learning techniques in optimizing the behaviors of the ESS and the generators and other components in the grid. The objectives of this research are to investigate the current algorithms of renewable energy integration in smart grids, explore RL algorithms, develop novel RL-based models and algorithms for optimization control and cybersecurity, evaluate their performance through simulations on real-world data set, and provide practical recommendations for implementation. The research approach includes a comprehensive literature review to understand the challenges and opportunities associated with renewable energy integration. Various optimization algorithms, such as linear programming (LP), dynamic programming (DP) and various RL algorithms, such as Deep Q-Learning (DQN) and Deep Deterministic Policy Gradient (DDPG), are applied to solve problems during renewable energy integration in smart grids. Simulation studies on real-world data, including different types of loads, solar and wind energy profiles, are used to evaluate the performance and effectiveness of the proposed machine learning techniques. The results provide insights into the capabilities and limitations of machine learning in solving the optimization problems in the power system. Compared with traditional optimization tools, the RL approach has the advantage of real-time implementation, with the cost being the training time and unguaranteed model performance. Recommendations and guidelines for practical implementation of RL algorithms on power systems are provided in the appendix

    Optimization and Applications

    Get PDF
    Proceedings of a workshop devoted to optimization problems, their theory and resolution, and above all applications of them. The topics covered existence and stability of solutions; design, analysis, development and implementation of algorithms; applications in mechanics, telecommunications, medicine, operations research

    Achieving High Renewable Energy Integration in Smart Grids with Machine Learning

    Get PDF
    The integration of high levels of renewable energy into smart grids is crucial for achieving a sustainable and efficient energy infrastructure. However, this integration presents significant technical and operational challenges due to the intermittent nature and inherent uncertainty of renewable energy sources (RES). Therefore, the energy storage system (ESS) has always been bound to renewable energy, and its charge and discharge control has become an important part of the integration. The addition of RES and ESS comes with their complex control, communication, and monitor capabilities, which also makes the grid more vulnerable to attacks, brings new challenges to the cybersecurity. A large number of works have been devoted to the optimization integration of the RES and ESS system to the traditional grid, along with combining the ESS scheduling control with the traditional Optimal Power Flow (OPF) control. Cybersecurity problem focusing on the RES integrated grid has also gradually aroused researchers’ interest. In recent years, machine learning techniques have emerged in different research field including optimizing renewable energy integration in smart grids. Reinforcement learning (RL), which trains agent to interact with the environment by making sequential decisions to maximize the expected future reward, is used as an optimization tool. This dissertation explores the application of RL algorithms and models to achieve high renewable energy integration in smart grids. The research questions focus on the effectiveness, benefits of renewable energy integration to individual consumers and electricity utilities, applying machine learning techniques in optimizing the behaviors of the ESS and the generators and other components in the grid. The objectives of this research are to investigate the current algorithms of renewable energy integration in smart grids, explore RL algorithms, develop novel RL-based models and algorithms for optimization control and cybersecurity, evaluate their performance through simulations on real-world data set, and provide practical recommendations for implementation. The research approach includes a comprehensive literature review to understand the challenges and opportunities associated with renewable energy integration. Various optimization algorithms, such as linear programming (LP), dynamic programming (DP) and various RL algorithms, such as Deep Q-Learning (DQN) and Deep Deterministic Policy Gradient (DDPG), are applied to solve problems during renewable energy integration in smart grids. Simulation studies on real-world data, including different types of loads, solar and wind energy profiles, are used to evaluate the performance and effectiveness of the proposed machine learning techniques. The results provide insights into the capabilities and limitations of machine learning in solving the optimization problems in the power system. Compared with traditional optimization tools, the RL approach has the advantage of real-time implementation, with the cost being the training time and unguaranteed model performance. Recommendations and guidelines for practical implementation of RL algorithms on power systems are provided in the appendix
    corecore