44 research outputs found

    Satisfiability Modulo ODEs

    Full text link
    We study SMT problems over the reals containing ordinary differential equations. They are important for formal verification of realistic hybrid systems and embedded software. We develop delta-complete algorithms for SMT formulas that are purely existentially quantified, as well as exists-forall formulas whose universal quantification is restricted to the time variables. We demonstrate scalability of the algorithms, as implemented in our open-source solver dReal, on SMT benchmarks with several hundred nonlinear ODEs and variables.Comment: Published in FMCAD 201

    Local Search For SMT On Linear and Multilinear Real Arithmetic

    Full text link
    Satisfiability Modulo Theories (SMT) has significant application in various domains. In this paper, we focus on quantifier-free Satisfiablity Modulo Real Arithmetic, referred to as SMT(RA), including both linear and non-linear real arithmetic theories. As for non-linear real arithmetic theory, we focus on one of its important fragments where the atomic constraints are multi-linear. We propose the first local search algorithm for SMT(RA), called LocalSMT(RA), based on two novel ideas. First, an interval-based operator is proposed to cooperate with the traditional local search operator by considering the interval information. Moreover, we propose a tie-breaking mechanism to further evaluate the operations when the operations are indistinguishable according to the score function. Experiments are conducted to evaluate LocalSMT(RA) on benchmarks from SMT-LIB. The results show that LocalSMT(RA) is competitive with the state-of-the-art SMT solvers, and performs particularly well on multi-linear instances

    10161 Abstracts Collection -- Decision Procedures in Software, Hardware and Bioware

    Get PDF
    From April 19th, 2010 to April 23rd, 2010, the Dagstuhl Seminar 10161 "Decision Procedures in Soft, Hard and Bio-ware" was held in Schloss Dagstuhl Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as links to slides and links to papers behind the presentations and papers produced as a result of the seminar are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    CHC-COMP 2022: Competition Report

    Full text link
    CHC-COMP 2022 is the fifth edition of the competition of solvers for Constrained Horn Clauses. The competition was run in March 2022; the results were presented at the 9th Workshop on Horn Clauses for Verification and Synthesis held in Munich, Germany, on April 3, 2022. This edition featured six solvers, and eight tracks consisting of sets of linear and nonlinear clauses with constraints over linear integer arithmetic, linear real arithmetic, arrays, and algebraic data types. This report provides an overview of the organization behind the competition runs: it includes the technical details of the competition setup as well as presenting the results of the 2022 edition.Comment: In Proceedings HCVS/VPT 2022, arXiv:2211.10675. arXiv admin note: text overlap with arXiv:2109.04635, arXiv:2008.02939 by other author

    Controlled and effective interpolation

    Get PDF
    Model checking is a well established technique to verify systems, exhaustively and automatically. The state space explosion, known as the main difficulty in model checking scalability, has been successfully approached by symbolic model checking which represents programs using logic, usually at the propositional or first order theories level. Craig interpolation is one of the most successful abstraction techniques used in symbolic methods. Interpolants can be efficiently generated from proofs of unsatisfiability, and have been used as means of over-approximation to generate inductive invariants, refinement predicates, and function summaries. However, interpolation is still not fully understood. For several theories it is only possible to generate one interpolant, giving the interpolation-based application no chance of further optimization via interpolation. For the theories that have interpolation systems that are able to generate different interpolants, it is not understood what makes one interpolant better than another, and how to generate the most suitable ones for a particular verification task. The goal of this thesis is to address the problems of how to generate multiple interpolants for theories that still lack this flexibility in their interpolation algorithms, and how to aim at good interpolants. This thesis extends the state-of-the-art by introducing novel interpolation frameworks for different theories. For propositional logic, this work provides a thorough theoretical analysis showing which properties are desirable in a labeling function for the Labeled Interpolation Systems framework (LIS). The Proof-Sensitive labeling function is presented, and we prove that it generates interpolants with the smallest number of Boolean connectives in the entire LIS framework. Two variants that aim at controlling the logical strength of propositional interpolants while maintaining a small size are given. The new interpolation algorithms are compared to previous ones from the literature in different model checking settings, showing that they consistently lead to a better overall verification performance. The Equalities and Uninterpreted Functions (EUF)-interpolation system, presented in this thesis, is a duality-based interpolation framework capable of generating multiple interpolants for a single proof of unsatisfiability, and provides control over the logical strength of the interpolants it generates using labeling functions. The labeling functions can be theoretically compared with respect to their strength, and we prove that two of them generate the interpolants with the smallest number of equalities. Our experiments follow the theory, showing that the generated interpolants indeed have different logical strength. We combine propositional and EUF interpolation in a model checking setting, and show that the strength of the interpolation algorithms for different theories has to be aligned in order to generate smaller interpolants. This work also introduces the Linear Real Arithmetic (LRA)-interpolation system, an interpolation framework for LRA. The framework is able to generate infinitely many interpolants of different logical strength using the duality of interpolants. The strength of the LRA interpolants can be controlled by a normalized strength factor, which makes it straightforward for an interpolationbased application to choose the level of strength it wants for the interpolants. Our experiments with the LRA-interpolation system and a model checker show that it is very important for the application to be able to fine tune the strength of the LRA interpolants in order to achieve optimal performance. The interpolation frameworks were implemented and form the interpolation module in OpenSMT2, an open source efficient SMT solver. OpenSMT2 has been integrated to the propositional interpolation-based model checkers FunFrog and eVolCheck, and to the first order interpolation-based model checkerHiFrog. This thesis presents real life model checking experiments using the novel interpolation frameworks and the tools aforementioned, showing the viability and strengths of the techniques
    corecore