365 research outputs found

    Greedy randomized dispatching heuristics for the single machine scheduling problem with quadratic earliness and tardiness penalties

    Get PDF
    In this paper, we present greedy randomized dispatching heuristics for the single machine scheduling problem with quadratic earliness and tardiness costs, and no machine idle time. The several heuristic versions differ, on the one hand, on the strategies involved in the construction of the greedy randomized schedules. On the other hand, these versions also differ on whether they employ only a final improvement step, or perform a local search after each greedy randomized construction. The proposed heuristics were compared with existing procedures, as well as with optimum solutions for some instance sizes. The computational results show that the proposed procedures clearly outperform their underlying dispatching heuristic, and the best of these procedures provide results that are quite close to the optimum. The best of the proposed algorithms is the new recommended heuristic for large instances, as well as a suitable alternative to the best existing procedure for the larger of the middle size instances.scheduling, single machine, early/tardy, quadratic penalties, greedy randomized dispatching rules

    Improved Lower Bounds for the Early/Tardy Scheduling Problem with No Idle Time

    Get PDF
    In this paper we consider the single machine earliness/tardiness scheduling problem with no idle time. Two of the lower bounds previously developed for this problem are based on lagrangean relaxation and the multiplier adjustment method, and require an initial sequence. We investigate the sensitivity of the lower bounds to the initial sequence, and experiment with di?erent dispatch rules and some dominance conditions. The computational results show that it is possible to obtain improved lower bounds by using a better initial sequence. The lower bounds are also incorporated in a branch-and-bound algorithm, and the computational tests show that one of the new lower bounds has the best performance for larger instances.scheduling, early/tardy, lower bound

    A linear programming-based method for job shop scheduling

    Get PDF
    We present a decomposition heuristic for a large class of job shop scheduling problems. This heuristic utilizes information from the linear programming formulation of the associated optimal timing problem to solve subproblems, can be used for any objective function whose associated optimal timing problem can be expressed as a linear program (LP), and is particularly effective for objectives that include a component that is a function of individual operation completion times. Using the proposed heuristic framework, we address job shop scheduling problems with a variety of objectives where intermediate holding costs need to be explicitly considered. In computational testing, we demonstrate the performance of our proposed solution approach

    Heuristics for the Early/Tardy Scheduling Problem with Release Dates

    Get PDF
    In this paper we consider the single machine earliness/tardiness scheduling problem with di?erent release dates and no unforced idle time. We analyse the performance of several dispatch rules, a greedy procedure and a decision theory local search heuristic. The dispatch rules use a lookahead parameter whose value must be specified. We perform some experiments to determine an appropriate value for this parameter. The use of dominance rules to improve the solutions obtained by these heuristics is also considered. The computational results show that the use of the dominance rules can indeed improve the solution quality with little additional computational e?ort. To the best of our knowledge, this is the first analysis of heuristic performance for the early/tardy scheduling problem with release dates and no unforced idle time.scheduling, early/tardy, release dates, heuristics
    corecore